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Abstract

The term “omics” refers to the branches of science that study the entirety of types of biomolecules present within living organisms including 
genomics; transcriptomics; proteomics and metabolomics, among others. Each “omic” layer uncovers a unique molecular story about a cell or 
tissue sample. For example, genomics informs what can happen, transcriptomics indicates what might happen, proteomics describes what makes 
it happen, and metabolomics reveals what is presently happening. While single-omic studies have been useful for identification of biomarkers, they 
lack the prognostic or predictive power needed to address the missing heritability problem, which manifests as three key genetic gaps: the numerical 
gap, the predictive gap, and the mechanistic gap. In contrast, a layered multi-omic approach offers the promise of true in silico modeling of biological 
systems which can predict perturbations and bridge the mechanistic gap by integrating diverse molecular layers to generate novel insights which 
individual omics approaches often miss. However, the integration of multi-omics data is complex and fraught with technical and computational 
challenges, particularly when combining vertical molecular layers with distinct parameters and statistical distributions. In addition, vertical 
integration exacerbates the concept of dimensionality (P≫N), this occurs when the number of features (P) far exceeds the number of samples (N), 
leading to over-training of algorithms and breakdown of statistical and machine learning models which have been optimized for sample-rich spaces. 
To address this issue, single-cell and spatial multi-omic studies should be included. Single-cell omics enable cellular level molecular resolution which 
can resolve heterogeneity and significantly increase sample numbers through cell-by-cell readouts. Spatial multi-omic analyses will preserve the 
spatial context of molecular data. Given the many considerations involved in multi-omic study designs, from data acquisition to feature analysis, this 
review aims to provide a comprehensive roadmap for experimental design with strategies to improve data integration which can assist in harnessing 
the power of systems biology for drug discovery.
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Introduction
HThe past century witnessed remarkable theoretical and tech-

nical advancements including the birth of molecular biology. The 
pioneering experiments of Hershey and Chase in 1952 demonstrat-
ed that DNA is the genetic material, while the structural elucidation 
of DNA by Crick, Watson, Franklin and Wilkins unveiled the iconic 
double-helix molecular structure. Building on these discoveries,  

 
Francis Crick proposed the central dogma of molecular biology in 
1958, outlining the unidirectional flow of genetic information from 
DNA to RNA to proteins [1].

The sequencing of the human genome brought forth unex-
pected challenges and ultimately reshaped our understanding of 
genetic complexity. Two parallel efforts-the publicly funded Inter-

WWW.biomedgrid.com
WWW.biomedgrid.com
https://dx.doi.org/10.34297/AJBSR.2025.25.003340


Am J Biomed Sci & Res

American Journal of Biomedical Science & Research

Copyright© Jonathan RT Lakey

461

national Human Genome Sequencing Consortium and the private 
company Celera Genomics-released their findings in Nature and 
Science, respectively, in 2001 [2-4]. These publications marked a 
monumental achievement in genomics, unveiling the draft human 
genome sequence and providing the first comprehensive map of 
human genetic material.

The genome draft revealed that humans have approximately 
20,000 protein-coding genes, a finding that challenged long-stand-
ing assumptions about genome complexity. This discrepancy, re-
ferred to as the gene number paradox or G-value paradox, highlights 
the unexpected observation that humans, despite their complexity, 
possess a similar number of genes as simpler organisms, such as 
the nematode Caenorhabditis elegans (19,000 genes) or the mus-
tard plant Arabidopsis thaliana (27,000 genes) [5]. The paradox un-
derscored that organismal complexity is not solely dictated by the 
number of genes but also by the regulatory mechanisms, RNA-splic-
ing and multiple interactions between genetic elements. 

To address these questions, the ENCODE (Encyclopedia of DNA 
Elements) project was launched with the goal to identify and cata-
logue all known functional elements in the human genome [6]. One 
of the major findings from this work was that 80.4% of the human 
genome exhibits functionality in at least one cell type and revealed 
the critical roles of regulatory elements including enhancers, pro-
moters, and insulators, all of which were formally classified simply 

as “junk DNA.” These results emphasize that biological complexity 
arises from dynamic regulatory networks, rather than simply from 
gene count.

Recognizing the new complexity of biological systems, research-
ers began to adopt systems biology methodologies to move beyond 
reductionist approaches. Systems biology involves generation of 
scale-free networks to quantitatively assess relationships between 
multiple intermediates within and across molecular pathways [7]. 
This integrative approach allows investigators to model the intri-
cate web of molecular interactions driving biological processes, 
thus providing a more holistic understanding of cellular function.

These revelations highlighted the need for multiomics, a sys-
tems-level strategy that integrates data from genomics, transcrip-
tomics, proteomics, metabolomics, lipidomics and epigenomics. By 
bridging molecular layers, multiomics offers a powerful framework 
to connect genotype to phenotype and unravel the mechanisms un-
derlying complex traits and diseases.

Figure 1 shows various omics layers, each accounting for its 
respective molecular role, following a logical progression from 
gene-level regulation to cellular function. Epigenomics defines gene 
regulatory rules, genomics outlines genetic potential, transcrip-
tomics represents gene activity, proteomics describes functional 
machinery, and metabolomics captures dynamic biochemical pro-
cesses which include subfields like lipidomics.

Figure 1: Each Omics Layer Tells Its Own Story.

Each omics layer - epigenomics, genomics, transcriptomics, 
proteomics, and metabolomics - provides insight into a distinct 
molecular layer of the cell which can be integrated across multiple 
layers for a multiomics, systems level biology understanding (Fig-
ure 1).

Genomics (represented by the DNA double helix) deciphers 
the genetic blueprint, answering “what can happen” at the molec-

ular level. Epigenomics (symbolized by the modifications on DNA) 
reveals regulatory mechanisms that modulate gene expression 
without altering the sequence. Transcriptomics (depicted by RNA 
and ribosomes) captures the dynamic activity of gene expression, 
showing “what might happen” by identifying active transcripts. 
Proteomics (illustrated by a folded protein structure) describes 
“what makes it happen,” highlighting the molecular machines that 
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carry out cellular functions. Metabolomics (shown by small mole-
cule structures) reflects the real-time state of cellular metabolism, 
answering “what is happening now” through the study of metabolic 
intermediates. 

Genomics reveals the static blueprint of an organism’s genetic 
material, identifying variations in DNA sequences that underlie in-
herited traits and disease susceptibility. Next-generation sequenc-
ing (NGS) technologies have enabled rapid and precise detection 
of genomic mutations and novel biomarkers for precision medicine 
[8]. The genomic approach involves DNA extraction, amplification, 
and sequencing, followed by bioinformatics analysis for biomarker 
identification [9]. The human genome contains 4.1 to 5.0 million 
gene variants compared to the reference genome, with 99% aris-
ing from SNPs (Single Nucleotide Polymorphisms) and short indels 
[10].

Epigenomic studies catalog heritable changes in gene expres-
sion that do not alter the DNA sequence, including DNA methyla-
tion, histone modifications, chromatin structure, and non-coding 
RNAs [11,12]. These modifications regulate gene expression and 
mediate cellular responses to environmental factors (e.g. diet and 
stress) in a manner that expands the central dogma.

The focus of transcriptomics is on RNA transcripts including 
mRNA, lncRNA (long non-coding RNA) and microRNA, offering a 
snapshot of gene expression and regulation. High-throughput se-
quencing technologies, including RNA-seq, enable accurate tran-
script profiling and can resolve differentially expressed genes [13]. 
These methods, along with ChIP-seq, have advanced our under-
standing of signaling pathways and transcription factor regulation 
[13]. Genome-wide expression studies, employing technologies like 
microarrays and single-cell RNA-seq, can provide descriptive maps 
for both clinical and research applications [14].

Proteomics provides insight into the structure, abundance, and 
interactions of proteins, the molecular machines responsible for 
executing cellular functions. Advances in mass spectrometry-based 
proteomics have significantly expanded our understanding of pro-
tein-protein interactions (PPIs) and post-translational modifica-
tions (PTMs), which are critical for cellular function and signaling 
[15]. PTMs can trigger unique PPIs, such as with reader proteins, 
or indirectly alter interaction networks by inducing conformational 
changes or subcellular relocalization [16].

Metabolomics is the study of global metabolite profiles in bio-
logical systems and primarily uses advanced analytical techniques 
such as mass spectrometry and nuclear magnetic resonance to an-
alyze thousands of small molecules in cells, tissues, or biological 
fluids [17,18]. Metabolomics captures small molecules and metab-
olites, providing a real-time view of cellular metabolism, with sub-
fields such as lipidomics being commonly recognized. Metabolom-
ics serves as a powerful tool for linking phenotypes to genotypes 
and understanding global systems biology [19].

Limitations of Single Omic Approaches
Single-omics technologies have revolutionized our understand-

ing of biology by offering powerful tools to uncover key molecu-
lar mechanisms and disease-associated biomarkers. Genomics has 
identified genetic mutations responsible for heritable diseases like 
cystic fibrosis, sickle cell anemia, and Huntington’s disease, en-
abling the development of gene therapies [20,21]. Transcriptomics 
has advanced our understanding of gene expression and regulatory 
networks to enable antisense oligonucleotides therapy. Spinraza is 
a synthetic antisense oligonucleotide that modulates the splicing 
of the SMN2 gene, enabling it to produce full-length SMN protein, 
compensating for the loss of functional SMN1 protein in spinal 
muscular atrophy (SMA) [22]. Proteomics has revealed protein in-
teractions, post-translational modifications, and their roles in cel-
lular functions to inform drug efficacy and combination therapies 
such as in the mapping of the anaplastic lymphoma kinase (ALK) 
interactome for ceritinib, a drug for ALK-positive lung cancer [23]. 
Finally, metabolomic studies have identified key metabolic signa-
tures, offering real-time insights into cellular metabolism. 

Single-omics studies tend to focus on isolated aspects of mo-
lecular biology, overlooking the interconnective nature of biological 
processes. While genomics identify genetic variants, this approach 
does not reveal whether these variants are expressed or function-
ally relevant. Similarly, transcriptomic studies provide information 
on gene expression but often fail to correlate transcript levels with 
protein abundance or function. Proteomics offers a snapshot of 
protein abundance and activity but lacks upstream regulatory con-
text or downstream effects on metabolites. Finally, metabolomics 
reflects metabolic changes but cannot elucidate the genetic or pro-
teomic drivers of these changes. 

A key challenge in this area is the missing heritability problem 
(MHP), which highlights the inability of single-omics approaches, 
such as genomics alone, to fully link genotype to phenotype [24,25]. 
Genome-wide association studies (GWAS) can identify numerous 
genetic variants associated with a trait, yet these variants explain 
only a small fraction of the heritable phenotypic variation. The lim-
itations of single omic can be conceptualized as three key gaps. The 
numerical gap refers to the failure of single-omic studies to explain 
the full variance observed in traits or diseases. The prediction gap 
arises from the limited ability of single-omic approaches to build 
accurate, robust models for predicting disease onset, progression, 
or therapeutic response which is relevant for the development of 
better diagnostic and prognostic tools [25]. Finally, the mechanism 
gap highlights the challenge of elucidating causal relationships, as 
single-omics studies often reveal correlations without providing 
insight into the underlying biological mechanisms driving the ob-
served phenotype which is relevant for developing new drug tar-
gets or exploring novel mechanisms of action [25].

Multiomics for a Systems Biology Under-
standing

Multiomics approaches, powered by advancements in tech-
nologies such as next-generation sequencing (NGS) and high-res-
olution mass spectrometry, have not only improved the numerical 
gap by generating vast amounts of data but are also addressing the 
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prediction gap by uncovering complex molecular interactions and 
revealing patterns not discernible with single-omics approaches. 
Researchers have shown that as little as 10 microliters of capillary 
blood collected at home, can accurately profile proteins, metabo-
lites, and lipids using mass spectrometry methods with very high 
correlation to omic data collected from traditional venous blood 
draws [26]. Developing surrogate models with lower-cost assays 
can make multi-omics approaches commercially feasible and scal-
able. Longitudinal studies combining transcriptomics, proteomics, 
and metabolomics have enabled the identification of predictive bio-
markers for aging-related diseases and preterm birth risks, demon-
strating the power of multiomics to bridge temporal gaps in disease 
progression [27]. In COVID-19, the horizontal integration of bulk 
metabolomics from serum, saliva, and sebum has revealed distinct 
metabolic profiles, identified key biomarkers, and highlighted sig-
nificant pathway alterations. [28].

Multiomics integration has also bridged the mechanism gap 
by uncovering novel causal relationships. Integration of spatial 
transcriptomics and proteomics at the maternal-fetal interface re-
vealed that fetal extravillous trophoblasts (EVTs) primarily drive 
the invasion of maternal tissue and remodeling of uterine spiral 
arteries, challenging previous assumptions that maternal immune 
cells were responsible. These findings offer key insights into pla-
cental development and implications for pregnancy complications, 
such as preeclampsia, where abnormal artery remodeling affects 

placental function and fetal growth [29]. In cancer, multiomics 
approaches have been instrumental in elucidating mechanisms of 
drug resistance. Studies on tamoxifen resistance in estrogen recep-
tor-positive (ER+) breast cancer integrated transcriptomics and 
metabolomics to reveal lipid metabolic reprogramming and dys-
regulated ketogenesis as central drivers of resistance, identifying 
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase 2 as 
a potential therapeutic target [30,31].

Challenges of Multiomics Integration
Successful multiomic experimental design involves structur-

ing experiments to enable data integration either vertically and/
or horizontally (Figure 2). Vertical integration links different omics 
data types together (e.g. epigenomics, genomics, transcriptomics, 
proteomics, and metabolomics) [32]. While this approach offers a 
comprehensive view of molecular interactions across layers, it also 
exacerbates the challenge of dimensionality. Dimensionality issues 
arise when the number of features (P) far exceeds the number of 
samples (N), leading to sparse data distributions, reduced statis-
tical power, and unreliable model predictions. This conundrum is 
particularly problematic for biological data, which are inherently 
high-dimensional, and becomes more pronounced as the integra-
tion of multiple omics layers significantly increases the number 
of features. Statistical and machine learning models optimized for 
sample-rich, lower-dimensional data, break down at this boundary, 
leading to overfitting and reduced model performance [33].

Figure 2: Multi-Dimensional Integration of Omics Data.

Horizontal integration aggregates the same omics data type 
across multiple studies or datasets within the same molecular layer 
[34]. This strategy is particularly valuable for integrating publicly 
available datasets, such as genomics repositories, or reconciling 
longitudinal data collected across different institutions. Addressing 
batch effects, or the technical variations between datasets that can 
obscure biological signals, is a well-characterized bioinformatics 

challenge with established solutions [35,36]. Effective batch effect 
correction is critical for harmonizing these datasets, ensuring that 
insights into temporal changes (e.g., disease progression or recov-
ery) or spatial variability (e.g., tissue heterogeneity) remain robust 
and reproducible. Temporal (longitudinal) integration allows for 
the characterization of dynamic processes including aging, disease 
progression, and treatment responses while spatial integration 
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enables the exploration of tissue heterogeneity, cellular diversity, 
and subcellular interactions. This approach is particularly valuable 
for uncovering the spatial organization of molecular pathways and 
their role in tissue- or cell-specific functions, as well as for identify-
ing localized dysregulations in disease states (Figure 2).

Figure 2 illustrates two primary strategies for multiomics in-
tegration: vertical and horizontal. Vertical integration captures 
hierarchical relationships across molecular layers (epigenomics 
to metabolomics), showing how regulation flows from DNA mod-
ifications to metabolites. Horizontal integration explores temporal 
and spatial dimensions, tracking molecular changes over time (e.g., 
disease progression, treatment responses) and across spatial scales 
(e.g., tissue heterogeneity, cellular diversity).

To further tackle the dimensionality challenge, techniques like 
dimensionality reduction and intrinsic dimension analysis help 
transform data into lower-dimensional spaces without signifi-
cant information loss [37]. Machine learning frameworks, such as 
OmiEmbed, also address this issue by effectively capturing patterns 
within high-dimensional datasets [38]. Single-cell multiomics sig-
nificantly enhances the resolution of molecular studies by provid-
ing cell-by-cell readouts, addressing data sparsity, and resolving 
cellular heterogeneity. While single-cell approaches may initially be 
more expensive to run due to the complexity of data acquisition and 
processing, they can often be more cost-effective in the long term. 

Traditional methods require thousands to millions of bulk samples 
to achieve similar statistical power, which is impractical and pro-
hibitively expensive, especially when each sample, such as a patient 
biopsy, can cost thousands of dollars depending on the type.

In contrast, single-cell multiomics treats each cell within a sin-
gle sample as an individual data point, effectively multiplying the 
sample size and increasing statistical power without the need for 
additional physical samples. This not only reduces the cost per dat-
apoint but also maximizes the value of rare and expensive samples, 
making single-cell approaches a practical and scalable solution for 
many applications to the extent that some would argue the most 
cost-effective strategy is to adopt single-cell approaches. However, 
single cell omics studies are not without its drawbacks. Single-cell 
methods often suffer from sparse data, with fewer reads per tran-
script in transcriptomic studies using platforms like 10x Genomics 
[38]. Sparsity makes it challenging to detect low-abundance pro-
teins or RNA molecules, which require highly sensitive and finely 
tuned methods to capture accurately. These limitations underscore 
the importance of carefully considering whether to use bulk or sin-
gle-cell approaches, as this choice represents a critical decision in 
multiomics experimental design (Figure 3). Each approach offers 
distinct advantages and drawbacks, and the decision should be 
guided by the specific research question, the type of biological in-
sights sought, and the resources available.

Figure 3: Decision tree for selecting omics modalities, integration strategies, and analytical methods.

Another challenge of multiomics integration is the specialized 
computational requirements of each omics layer and the sheer 
volume of data generated. While individual layers, such as ge-
nomics, transcriptomics, proteomics, and metabolomics, require 
tailored computational pipelines, understanding complex bio-
logical systems demands simultaneous analysis across all layers. 

This requires substantial computational power, interdisciplinary 
expertise, and advanced frameworks capable of synthesizing data 
into unified models. However, integration and data analysis often 
become bottlenecks, as well-established methods can generate a 
PhD’s worth of data in just a few weeks, yet the analytical capaci-
ty to process and visualize these big datasets still pose a challenge 
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[39-41]. Addressing these issues remains critical to advancing mul-
tiomics research, emphasizing the need for innovative solutions in 
data integration and visualization to fully realize the potential of 
multiomic approaches.

Web-hosted tools have emerged as critical resources to assist 
in providing accessible platforms for multiomics integration and 
analysis (Table 1). These tools streamline workflows by offering us-
er-friendly interfaces, computational efficiency, and prebuilt pipe-
lines for integrating diverse datasets, making them indispensable 

for researchers aiming to maximize the potential of multiomics 
approaches. Beyond simplifying analysis, web-hosted tools foster 
collaboration by enabling researchers across disciplines and insti-
tutions to share data, methodologies, and results in real time. Many 
of these tools support open-source frameworks, enabling the sci-
entific community to contribute to the refinement and expansion 
of these platforms. This collaborative environment enhances the 
training of machine learning and deep learning models, as aggre-
gated datasets from diverse users improve model robustness, accu-
racy, and generalizability.

Table 1: Web Hosted Multi omics Integration Tools.

Tool Data Types Analysis Ref.

Reactome Genomics, Transcriptomics, 
Proteomics, Metabolomics

Pathway enrichment, 
visualization, and functional 

annotation
[42]

MetaboAnalyst Metabolomics, Transcriptomics Statistical analysis, pathway 
mapping, biomarker discovery [43]

STRING Proteomics, Transcriptomics Protein-protein interaction 
networks, enrichment analysis [44]

OmicsNet Transcriptomics, Proteomics, 
Metabolomics

Multiomics network 
construction and visualization [45]

Galaxy Genomics, Transcriptomics, 
Epigenomics

Workflow creation, integration, 
data analysis pipelines [46]

iPath Metabolomics, Proteomics Interactive metabolic pathway 
visualization [47]

ToppGene Genomics, Transcriptomics Gene prioritization and 
functional enrichment [48]

GSEA (Gene Set Enrichment 
Analysis) Transcriptomics, Proteomics Functional enrichment, gene set 

analysis [49]

ShinyOmics Genomics, Transcriptomics, 
Proteomics

Interactive visualization and 
exploratory analysis [50]

Cytoscape Multiomics, Network Data Network-based data integration 
and pathway visualization [51]

PathVisio Transcriptomics, Metabolomics Pathway analysis and metabolic 
network visualization [52]

OmicsIntegrator Genomics, Proteomics
Integration of multiomics 

datasets into biological 
networks

[53]

Phantasus Transcriptomics Interactive analysis and 
visualization of gene expression [54]

XCMS Online Metabolomics Feature detection, alignment, 
and metabolic pathway analysis [55]

KEGG Genomics, Transcriptomics, 
Proteomics, Metabolomics

Pathway mapping, functional 
annotation [56]

METASPACE Metabolomics, Spatial Omics Spatial metabolite annotation 
and visualization [57]

ExpressionAtlas Transcriptomics Differential gene expression 
across conditions [58]

Multiomics Experimental Design
The first and most critical step in designing a multiomics exper-

iment is defining a clear and specific research question. A well-de-
fined question provides the foundation for selecting the appropri-
ate omics layers, integration strategies, and analytical methods. In 

the context of drug discovery, for example, the research question 
might be validating therapeutic targets while in personalized med-
icine, it would be designing a new prognostic tool using a surrogate 
predictive model distilled from amultiomics analysis. The more 
specific the question, the easier it becomes to tailor the experimen-
tal design to address it effectively (Figure 3).
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In general, multiomics experiments can aim to predict biologi-
cal outcomes, uncover novel mechanisms, or integrate diverse mo-
lecular layers to identify key biomarkers. Certain omics are more 
complementary than others and benefit from well-established 
workflows. For instance, genomics and epigenomics can be com-
bined to study gene regulatory networks like in the case of integrat-
ing single cell ATAC-seq with single cell RNA-seq [59]. Transcrip-
tomics and proteomics work together to connect gene expression 
with functional protein outputs [60]. Understanding these syner-
gies enables the chosen omics layers to provide maximal insight 
while aligning with the overall research objectives.

The next key decision in multiomics experimental design is 
selecting between bulk, single-cell, or spatial approaches for each 
omics layer. This choice depends on the specific research objec-
tive, data requirements, and practical limitations, such as budget 
constraints or technical expertise. While there is often a technique 
available to achieve the desired resolution, specialized methods 
like single-cell metabolomics remain under development, with 
pipelines and protocols still evolving [61].

1.	 Bulk approaches are ideal when the goal is to capture 
overall averages and broad molecular trends across a sample. 
They are the most cost-effective and practical option, particu-
larly when variations between individual cells or spatial con-
text are not central to the research question [62].

2.	 Single-cell approaches are essential for studies focused on 
cellular heterogeneity, such as identifying rare cell populations, 
resolving dynamic cell states, or understanding diversity with-
in tissues. These methods provide high-resolution insights but 
require greater expertise and resources [62-64].

3.	 Spatial approaches are necessary when the spatial orga-
nization of molecules, cells, or tissue architecture is critical. By 
preserving molecular context, these methods enable the study 
of localized interactions, such as those involved in development, 
disease progression, or tissue microenvironments [64,65].

Figure 3 outlines a structured flowchart for selecting omics 
modalities and analytical methods beginning with the choice of 
Bulk (sensitivity), Single-Cell (heterogeneity), or Spatial (molecular 
context) for a given omics datatype. For integration, data size (P: 
features; N: samples) determines the method: Linear Methods for 
P > N to avoid overfitting, leading to supervised learning for out-
come prediction, and Non-Linear Methods for P ≤ N to handle mod-
el complexity, often in unsupervised learning for pattern discovery. 
Examples include linear (e.g., PLS, MOFA) and non-linear tools (e.g., 
Neural Networks, UMAP, clustering).

The next step in multiomics experimental design hinges on the 
dimensionality of the data, which plays a critical role in determin-
ing whether linear or nonlinear methods should be employed for 
analysis. Linear methods are often favored for their simplicity and 
ability to avoid overfitting, especially when the number of features 
is moderate, and the data allows for clear relationships to be cap-
tured without excessive model complexity. Conversely, nonlinear 
methods, such as those leveraging machine learning, excel when 

the relationships between variables are intricate and non-linear, 
provided that the model is robust [66].

The choice between these approaches becomes particularly 
relevant in the context of horizontal and vertical data integration. 
Vertical integration, which combines data from multiple omics lay-
ers (e.g., transcriptomics, proteomics, and metabolomics), typically 
increases the number of features in the dataset. This can skew the 
balance toward linear methods, as they are less prone to overfit-
ting when handling large, feature-rich datasets. However, nonlinear 
methods remain preferable when the model incorporates accurate 
assumptions, adheres to best practices in machine learning such as 
avoiding data leakage or contamination and demonstrates minimal 
overfitting based on established metrics like cross-validation per-
formance and independent test set evaluation [67,68].

For high-dimensional data (P > N), linear methods are rec-
ommended to minimize overfitting, with supervised learning 
approaches such as PLS (Partial Least Squares), CCA (Canonical 
Correlation Analysis), DIABLO (Data Integration Analysis for Bio-
marker discovery using Latent variable approaches for Omics stud-
ies), LASSO (Least Absolute Shrinkage and Selection Operator), 
and Elastic Net ensuring interpretable outputs (Figure 3). For com-
plex, non-linear relationships, supervised techniques like neural 
networks, random forests, and Bayesian networks are applicable 
[40,69].

In contrast, for data where P ≤ N, non-linear methods can be 
employed to capture greater model complexity. Here, unsupervised 
learning facilitates exploratory analyses, with linear tools like Fac-
tor Analysis and MOFA (Multi-Omics Factor Analysis) or non-linear 
approaches such as autoencoders, SNF (Similarity Network Fusion), 
UMAP (Uniform Manifold Approximation and Projection), and clus-
tering techniques revealing patterns and relationships [40,69].

The choice between supervised and unsupervised methods in 
multiomics analysis depends on the experimental goals. Supervised 
methods are generally employed when a clear readout, prediction, 
or validation of a hypothesis is required. For example, linear su-
pervised methods, such as regression or classification models, are 
favored when relationships between features and the outcome are 
relatively straightforward and when avoiding overfitting is para-
mount. Nonlinear supervised methods, including machine learning 
approaches like decision trees or neural networks, are more suit-
able for capturing complex patterns in the data but require careful 
implementation to avoid overfitting and ensure generalizability 
[69,70].

In contrast, unsupervised methods are inherently exploratory, 
often serving as a first step in hypothesis generation or identifying 
underlying structures within the data. Linear unsupervised meth-
ods, such as principal component analysis (PCA), are ideal for re-
ducing dimensionality and uncovering dominant trends in a data-
set without imposing model complexity. Nonlinear unsupervised 
methods, such as t-SNE or UMAP, can reveal intricate patterns, 
clusters, or relationships that are not detectable through linear 
approaches [69,70]. However, these exploratory results often ne-
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cessitate follow-up experiments or further validation to confirm 
biological relevance. Thus, the decision to use linear or nonlinear 
methods-whether supervised or unsupervised-should align closely 
with the specific aims of the study and the complexity of the data 
at hand.

Discussion
Multiomics represents a paradigm shift in biological research, 

offering a systems-level understanding of complex traits and dis-
eases. Through the integration of diverse molecular datasets, mul-
tiomics transcends the constraints of single-omics approaches, 
offering profound insights into genotype-phenotype relationships 
and catalyzing advancements in drug discovery. Nevertheless, its 
full potential hinges on sustained innovation in experimental meth-
odologies, integrative strategies, and computational frameworks.

The advent of the “whole data package” concept has emerged 
as a cornerstone in modern pharmaceutical research. In drug dis-
covery, assembling a comprehensive dataset is often necessary to 
motivate stakeholders to pursue validation experiments. Isolated 
evidence from bulk sequencing or single-cell RNA-seq, for instance, 
may encounter skepticism regarding its reproducibility or biologi-
cal significance. Critics might question whether such findings are 
substantiated by genetic evidence or merely reflect assay-specific 
artifacts. By synthesizing multiple data modalities-encompassing 
bulk, single-cell, and spatial omics-into a cohesive and robust pack-
age, researchers can mitigate these doubts and present a compel-
ling case that resonates with seasoned drug discovery profession-
als. This integrative approach addresses the intrinsic limitations of 
individual datasets and cultivates confidence in the identification of 
novel therapeutic targets.

Convincing an audience of regulatory or scientific experts to 
embrace unproven targets is challenging. The “whole data pack-
age” paradigm, characterized by the synthesis of high-dimensional, 
multilayered datasets, establishes the requisite level of rigor to en-
gender trust and enthusiasm among such stakeholders. This meth-
odology ensures that candidate targets are scrutinized from diverse 
analytical perspectives, minimizing the risk of false positives and 
elucidating their biological relevance with unparalleled precision.

Looking forward, collaborative and interdisciplinary initiatives 
will be instrumental in unlocking the full potential of multiomics. 
The integration of artificial intelligence and machine learning into 
multiomics workflows holds immense promise for uncovering la-
tent patterns and elucidating complex interdependencies with-
in expansive datasets [71]. Simultaneously, the development of 
cost-effective and scalable techniques for single-cell and spatial 
omics will democratize access to these transformative tools, em-
powering researchers across both academic and industrial spheres 
to harness their capabilities in drug discovery.

By delivering a complete data package, multiomics has the 
potential to ameliorate the productivity problem in drug develop-
ment. It streamlines the identification of therapeutic targets, reduc-
es the time and cost associated with pre-clinical validation, and im-

proves the predictive accuracy of drug efficacy and safety profiles. 
By interweaving high-dimensional datasets, multiomics unearths 
actionable biomarkers and mechanistic insights that elude tradi-
tional methodologies. Such a holistic perspective has the potential 
to revolutionize early-stage drug discovery, refine clinical trial de-
sign with precision, and expedite the transition of innovative thera-
pies from bench to bedside.
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