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Abstract—An effective distributed network requires an ad-
dressing mechanism and distribution of data that is designed
to overcome churn (the unmanageable outage, node failure or
unforeseen communication fault). There are several implementa-
tions of such a system, but this paper proposes a system that
not only provides an efficient churn-resistant DHT, but also
has fast awareness of infrastructure changes. This allows the
implementation of a locking system, thereby enabling amendment
of data from multiple sources.
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I. INTRODUCTION

D ISTRIBUTED hash tables are a method of storing data
in a key/value system in a distribution that should

be set to allow for multiple node failures. This particular
DHT implementation is based upon Kademlia as described
in Kademlia: A Peer-to-peer Information System Based on the
XOR Metric [5].

Data validity is achieved in Kadmelia by selecting a value
for the replication factor (κ) that is the number defined as the
optimum node count in a network that will not fail between
refresh times f(t). This f(t) is generally set to a system wide
constant and obeyed by all nodes. In an improved version
of the refresh as identified in Improving the Performance and
Robustness of Kademlia-based Overlay Networks [6] this f(t)
is not fixed but distributed over a period where nodes should
refresh in a more random fashion. This reduces refresh traffic
on the network and allows all the κ nodes to reset their refresh
timers. This paper presents a system that removes this refresh
timer altogether in favour of a solution that is closer to real
time.

In addition the paper Improving the Performance and
Robustness of Kademlia-based Overlay Networks [6] also
promotes a system of down list, whereby a node that is found
to be down is reported by the node searching for it back to
the node that provided this dead nodes details in a search
iteration. This is a significant improvement in the Kadmelia
network and with a κ of 20 is reportedly takes the current
accuracy measurement of a κ bucket from 13/20 to 19.8/20
good nodes. This is a dramatic improvement and will again
save on network traffic and time-outs wasted on dead nodes.
The system presented here will improve on this performance
significantly.

II. KADEMLIA OBSERVATIONS

Some issues with Kademlia and DHTs in general is the
ability to amend (or delete) values after publishing. This is
due to the inherent distributed nature of the values (as the
name suggests). As values are distributed in a pseudo random
manner (mathematical predictability becomes an issue due to
the large amount of variables (routes, nodes, node names,
locations etc.) and random1 human input).

Searches on Kademlia networks are very fast and iterative
(not recursive). This means that each node will ask some nodes

1Random here is used to indicate not computationally recognisable with
today’s resources.
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a question, get answers (hopefully) and from the answers
construct a new node list to ask. If this were recursive, then
a failed node would halt the process; as this is iterative
then failed nodes simply time-out whilst the search continues
(this is the β (required replies to continue) requirement, from
the α (loosely parallel level) searches). As Kademlia uses a
binary tree and XOR searching the search time per iteration
is O ln n (where O is network latency and a factor of XOR
distance between node IDs (holes in address space) and n
is number of nodes, not number of possible nodes). This
figure can be improved upon by the additions shown so far.
Further examination of the O constant may lead to further
improvements in search completion times by not only using
decreasing distance but also decreasing distance with path
protection (multiple routes protected) by examination of XOR
distance between parts of the network, particularly where there
is binary imbalance in early days.

A. Value Handling

In Kademlia there are several methods of ensuring values
are consistent and protected at the same time. The initial value
to be considered is K and this should be chosen to be the
number of random nodes that can be allowed to go offline
in a refresh time (REFRESH). There is also a republish time
(REPUB) which is the initial store of the value and sets a time
to live (TTL) value on the data. It should be noted in the
MAIDSAFE_DHT this TTL may be set at (-1), representing do
not time-out. In cases where a TTL is set, then the publisher
must store the data again (effectively resetting the TTL) should
it wish to maintain the data for an extended period.

1) Caching: In Kademlia, values are cached distant from
their natural location of the κ closest nodes. The values are
cached using a simple mechanism, whereby the last node that
did not have the value, is given if for future searches. This
increases efficiency of search and reduced the iteration count.
There is currently no mechanism in Kademlia to use these
cached values to improve data consistency. See section IV-A
for an improvement based upon this omission.

The TTL is used in this instance to calculate how long
a value can live and the further away from the κ closest
determines the TTL value that each value has. This value is
chosen as the reciprocal of the distance from κ of the value
(this distance is the XOR (⊕) distance). This distance figure
may be further analysed to proved a more efficient mechanism
such as the 1/(⊕ distance/current height of tree) to be
more effective and accurate.

This can present issues when the refresh time (usually 60
mins but configurable) is due. In this case the node must check
it is in the κ closest and if so refresh (i.e. send a store_value)
the κ closest nodes. β refresh, as described in [6] is used to
vary in an evenly distributed way the 60 minute intervals to
reduce potential for race conditions in republishing values.

2) Time To Live Values: The TTL can be different for any
different type of file, from seconds to a figure indicating do
not delete ever (i.e. -1). For fast changing data the TTL should
be small, and for unchanging data (like digital keys) the TTL
should be very large. This value is only reset by the storing

node unless another algorithm for that value type is known
by the Kademlia node. Extending kademlia nodes to validate
rules based on data types is explain in section IV-B.

B. Routing table architecture

An empirical and difficult to understand part of Kademlia
is the routing table. This routing table in a very clever, yet
misunderstood part of XOR based routing. It all starts with a
single κ bucket which does not contain the nodes own address.
As the network starts up and nodes are added to this bucket
it splits. As more nodes are added the 1st bucket continues to
split up to the point where there are n−1 buckets. Nodes will
continue to be added, which if no node vanished would mean
the buckets would fill quickly to a maximum node count. As
each bucket is created it covers an area of the network which
is 2n in size. In this case n represents the bucket value starting
from 0 all the way to n−1 therefore the last bucket is 2511 in
this case is a 512 bit address size. In many cases it is simpler to
think of the buckets address as the number of most significant
bits in common with bucket having n− 1 bit in common and
bucket 0 (the bucket the node should be in) as the bucket with
n− 1 bits in common (i.e. leaving space of just 2 entries, a 0
and a 1). This number represents the number of nodes covered
by this bucket, another way to think of this is that the bucket
is responsible for routing in that area of the network.

It then becomes obvious that the last bucket covers half of
the network address space therefore 50% of all nodes will exist
in a bucket containing κ nodes. In the case under discussion
we assumed a κ = 4. Then 4 nodes are all that is locally
known about for information for the other half of the network
from the address of the routing tables owner.

This is vital to understand that as the average distance
between all the nodes in the last bucket is 2n/(2∗κ) which is
a significant distance. More importantly though the 1st bucket
will contain nodes extremely close and in fact in a full network
the first bucket would contain a single node in the last leaf of
the binary tree shared by the nodes own address.

In essence the distribution of node distance known by each
bucket increases logarithmically and therefore the knowledge
of each segment represented by a bucket decreases logarith-
mically. This presents a difficult to comprehend system that
is generally missed by a casual reader of a binary tree based
XOR routing algorithm.

III. MANAGED CONNECTIONS

Unlike other algorithms such as chord where each node
maintains numkeys/numnodes in Kademlia based networks
each node maintains the keys that are between his ID and the
ID of the κ closest nodes. This combined with the fact that it
is the nodes closest to any node that are more significant in
terms of knowledge of the network. This basically states the
closer a node is to you then the more you should know about
it, for the network to operate correctly this is fundamental.

To achieve this Kademlia uses a notion of κ buckets as
described in Kademlia: A Peer-to-peer Information System
Based on the XOR Metric [5]. The size of the routing table
when expressed as κ buckets is n−1 where n is the size of the
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network address in bits. For a SHA1 based addressing scheme
this is 159 buckets. Taking a traditional set-up for κ of 20 this
means the number of nodes in a routing table is a maximum
value of 159∗20 = 3180. The MAIDSAFE_DHT default address
space size is 512 (SHA512) which would equate to a routing
table node count of 511∗20 = 10, 220, reducing κ to perhaps
4 would dramatically reduce the routing table size to a more
manageable 511∗4 = 2044. A κ value of 4 though is perhaps
dangerous unless the refresh value was very small indeed,
creating lots of traffic in the balance between integrity and
network congestion.

The traffic due to down-list and refresh is reasonably high
and exists in an attempt to ensure routing tables are maintained
with live nodes as well as maintaining data on the network in
a reliable fashion.

A. DHT transport
In this DHT implementation, unlike pure Kademlia, we use

a reliable transport mechanism, although like Kademlia, the
underlying transport is User Datagram Protocol (UDP). In this
case a version of reliable overlay was chosen and is currently
UDT2, although this is open to change.

Such transports, like Transport Control Protocol (TCP),
sequence data being transferred to allow the receiver to notify
the sender on message segment failure, which can be re-
transmitted. UDT uses a system of transmitting the acknow-
ledgements of sequences received every δ times and increasing
the value of δ on success. This allows a faster throughput that
TCP, which acknowledges every packet sent.

UDT allows the network to create connections between
nodes and keep these alive by sending very small single bit
transmissions every γ seconds. These connections (sockets) if
made on the same sending port can allow a demultiplexer to
handle many connections with little effort, reducing system
overhead.

Using this system a managed connection, or a connection
that is not closed transmits a very small packet every γ seconds
with a count of failures δ. The minimum time to find a
node dead is approximately 30 milliseconds for nodes that
gracefully leave the network or γ ∗ δ in the worst case where
a node crashes or becomes disconnected without notice.

B. Overhead per connection
In tests the memory overhead per connection is approxim-

ately 500Kb. This can be further reduced by removing some
unused attributes of a socket structure. The memory overhead
is likely to be reduced to between 80 and 150Kb. This paper
will assume a connection memory overhead of 150Kb. It is
possible that an efficient serialisation mechanism could further
reduce this with in memory structures and on disk structures to
complete all the socket requirements, allowing either complete
socket structures or partial structures to exist on disk, making
more efficient use of Random Access Memory (RAM).

The bandwidth costs per managed connection is less than
0.5 bytes per second, given a value of γ = 2.

2A UDP transport also allows traversal of Network Address Translation
(NAT) devices allowing nodes to traverse routers. This explanation is extended
in the paper maidsafe_dht NAT traversal [3].

C. Additional logic required for 1stκBucket

In the first bucket, where the values are held, it is imperative
that values are shared between the nodes. A value must be
shared by all the κ nodes. Ordinarily a refresh carries out this
process, but with managed connections, refresh is not called
any more. Therefore some logic has to be put in place to
ensure values are indeed distributed.

An additional RPC is required:
GIVE_VALUE[VALUES] -> this RPC is executed when a

node joins the κ closest to any node. The function is to pass
all values between the nodes address and the address of the
connecting node.

This RPC should now be sent on joining a κ group, or on
finding a node is now part of your κ. This RPC should also
be sent to each node in the κ closest to any value held by a
node in the event of any amendments to any values.

The refresh logic of Kademlia is now no longer required as
long as a managed connection is maintained for the κ closest
nodes at least.

D. Using Managed connections for all routing table entries
(requires simulation - VERY IMPORTANT)

If κ could be reduced to a suitably small number (say 4 or
even 2, see below) then the number of connections required
may be small enough to hold many hundreds connections,
particularly through a single port and multiplexer point. In
this case the complete network would be relatively current
and there would be no requirement for down-list logic (another
reduction in code).

1) Incoming connections: In the case where all routing
table entries are in fact managed connections, it is not only the
routing table entries that require to be managed by the node.
Other nodes who add the current node to their routing table
will create connections back to this node. This increases the
number of structs to be maintained and could grow to a very
significant number.

In such network the nodes in one routing table should
not be the same nodes in another routing table, this is also
a logarithmically possible situation and the higher buckets
should increasingly follow this rule, with the closer buckets
being likely to have two way nodes that exists in each,
particularly the κ bucket. The bucket n−1 for instance should
certainly not share contacts between nodes. To ensure such
a system may work effectively the number of connections
required is in fact 2∗κ∗n. This allows each bucket to maintain
its κ outgoing connections and accept κ incoming connections.
This may slow down the population of all κ buckets per node
as many may refuse the incoming connections as its κ bucket
is full.

2) Replica value count: In standard Kademlia the replica
number is κ which suffices and perhaps even improves al-
gorithmic efficiency (through simplicity). There is no reason
for this to remain the case and with managed connections and
much lower values of κ there is no reason whatsoever for the
value replicant count to be κ ∗ 2 (or any arbitrary number for
that matter).
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In cases where κ is a low value (such as 2) then using
a replicant count of κ ∗ 2 allows a further increase in data
retention, this should be a consideration when reducing the
size of the routing table for obvious reasons.

This presents no issues for the DHT and does not impact
adversely on any algorithmic complexity.

E. Recursive lookups

It is very important in distributed computing not to hold
state on remote actions. This is because remote actions are
just that, remote and therefore out of your control. Kademlia
handles this well with iterative searches carried out in a loosely
parallel fashion as described in II.

With managed connections, however, there is a different
situation as we are working with a very current network of
nodes who are all in communication. In such a case a recursive
lookup may prove significantly faster and also with much less
network traffic.

This recursive lookup can now be a single message to the
closest node in the routing table, who recursively passes on
to their closest node and so on. On any failure the recursion
would continue from the previous node to the failure, who has
an open RPC that will fail to the failed node and can easily
select the next closest node.

On finding a node or value the requester is passed the
contact tuple of the node in question from the last node in
the chain (not the actual node who has the answer) and then
continues with normal kademlia logic, which may involve
getting the κ closest nodes in a find node situation or simply
getting a value in the get value situation. Caching and last
node requests in addition to caching (in future) can then also
cache the value in a find value request and do so without being
requested.

IV. ADDITIONAL IMPROVEMENTS

A. Resilient caching

As explained in section II-A1, caching can be used to
improve data reliability at the DHT level with an improved
caching algorithm. As described cache data will expire faster
than actual data, this is by design to remove the possibility
of stale data. This is a wise stance to take, as stale data may
prove to be extremely cumbersome and pollute the data store.

As described in section II-A, only the publisher should
republish information. This makes perfect sense and the re-
sponsibility to do so should lie with the publisher. This does
not, however, mean the network should not attempt to maintain
the data up to the TTL expiration time3 has elapsed.

The additional rules in this case, are relatively simple, a
node easily can detect it is holding cache data, it may even
be stored in a different location from current data. When the
TTL is close to expiring the node should check the κ closest
nodes supposedly holding the data still have a copy and if
not republish it to them. If a node that should have the data

3it should be noted here that all time is relative to an event and never
time from a date that is used. This allows the network to refrain from time
synchronisation services in order to calculate events.

receives such a store command from a cache node it should
calculate the distance the node is from it and multiply the
reciprocal time used to calculate caching in the first instance,
thereby increasing the TTL from nearly zero back to the value
closer to the actual TTL the value should be set at. This
process should take place a reasonable time before delete such
as 30 mins. This can be improved on by using the original
TTL and dividing by distance and use half the remaining TTL
as the trigger in the remote node. Each time half the TTL
remaining comes around again the remote node can trigger a
consistency check and store the data again if required by the
network. A suitable minimum time can be set by the system
(say 180 secs) where this consistency check stops (this is
the KCONSISTENCYSTOP setting). In nodes with a -1 TTL
(infinity) this consistency check is settable by the designer
(KCONSISTENCYCHECK).

If a value is deleted the closest nodes with the value (k
closest) should be updated with a -1 value and this should not
be cached, this prevents cached copies actually republishing
values that are due to be removed anyway (i.e. ignoring or
overriding the delete instruction).

B. Extending validation checks based on data types

In standard Kademlia all data is treated equally, in that
all key value pairs are just that. The MAIDSAFE_DHT allows
signed values and uses an extension of this system to cope with
different rules for a value. These rules allow manipulation of
data based on pre programmed actions. This allows for a very
flexible and very secure network to be created.

Some inbuilt rules are:

1) Only the signatory of a value can delete or amend the
value with a remaining TTL

2) If signed data exists all values must be signed (in this
case a node is configured as secure and will only talk
with other secure nodes and store secure data)

3) Multiple values may exist for any key, and all or none
may be independently signed.

In MAIDSAFE_DHT there is an interface which allows the user
to extend the functionality of store/delete/amend data. This
allows applications using such a system to implement different
data (or more correctly value) types and associate functions
with those data types. In it’s simplest for these rules are based
on the identified actions store, delete and amend. There are
infinitely more possibilities to this process with the inclusion
of an unknown RPC message, given and unknown (or not
recognised in our rule set) RPC the upper layer applications
can act on these RPC’s, allowing multiple action types to be
executed based on the RPC sent, in this case the DHT layer
will signal upper layers with a numbered signal message that
the upper layer can parse and associate the correct logic, which
may include amend a value including append data to the value,
in such cases the DHT layer will in turn be signalled to carry
out a refresh (or more accurately resynchronise the value in
the network, which in this case is permeate the new value
(which requires signatures in a signed system)).
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C. Delete or modify values

1) Description: As previously stated, modifying a value
in a distributed hash table is notoriously difficult. This is
endemic in the very nature of the pseudo random distribution
of data in such a network (the DHT strength is one of the
largest weaknesses here). If a single value is altered via any
method, the value itself may exist in many places and it’s
finding these places that’s the problem. We have already seen
the distribution as random, therefore this implies you would
be required to search every node in the network (not only
closest) for copies and make sure they are also altered. To
make this even more difficult, another node may also be
altering the value at the same time, thereby causing chaos in
the synchronising of data on the network, eventually leading
to total collapse.

This would imply that DHTs are only good read only,
however, in the case of MAIDSAFE_DHT, this negative attribute
is turned into a positive and essential aspect. As noted trying
to alter the content of a packet of data that hashes to the key
is an illegal instruction in some situations (LIFESTUFF and
MSSAN use this extensively).

2) Locks: To achieve reliability of data where multiple
copies may exist and be altered from multiple locations is
a problem that requires addressing, before changing data.
Using the above scenario a node intending to alter a piece
of data tries to get all the k-closest nodes via an search. On
success each node is sent a lock request which it answers
with (Acknowledge) ACK or (Negative Acknowledge) NACK.
Each node can pass this request to its known k-closest nodes.
On receipt of κ ACKs, the node then alters the value. On
receiving an altered value the holding nodes release the lock.
Failure to receive a value update in η seconds (settable)
seconds should auto release the lock.

Two locks in collision (which can still happen) are both
sent a NACK and back off for a random period. This may be
a defined algorithm based on network address at a future date.
With managed connections this is less likely as the response
will be very quick.

In a secured versions of MAIDSAFE_DHT this process has
the further check of signature validation which should prevent
all collisions.

V. CONCLUSIONS

The MAIDSAFE_DHT presented here is very loosely based
on Kademlia. The addition of managed connections is very in-
teresting and makes great use of a connections based protocol
where it would appear more obvious to use a connectionless
protocol for speed and network efficiency. The move from
multiple iterative searches to single recursive searches should
prove to be vastly more efficient and significantly faster. The
disconnection of κ bucket size from number of replicants
values is also significant in allowing a smaller number of
routing table entries, but improving data retention and validity.

This represents a use of a DHT system that is exceptionally
powerful in distributing network knowledge (Kademlia) and
extending this with a system of improvements that transform
the DHT into a network that can cope with increasingly

quickly altering data. This should represent an improvement
in distributed networking and distributed processing.

VI. FUTURE WORK

A. Consider equal distribution of nodes per bucket

To improve performance of searches the distribution of
nodes per bucket is important, particularity as the number
of buckets increases. This will also ensure a more efficient
calculation of tree height or number of nodes currently on the
network based on distance between nodes in a routing table.
Currently this is most effective in the n = 0 bucket, in fact
this is due to the fact that bucket should be most closely true
in a randomly distributed network, it is also the highest error
margin due to the lack of proper scale of measure.

B. Consider pre populating buckets

An algorithm to pre populate buckets using a distance
request may assist in mapping the network out quickly. This
can be implemented using a system of asking for a node in
bucket n asking for the nodes n−1 bucket of the same number.
This can be easily expanded into a very efficient algorithm.
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