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We report an experimental study of turbulent Rayleigh–Bénard (RB) convection in an
annular cell of water (Prandtl number Pr = 4.3) with a radius ratio η ' 0.5. Global
quantities, such as the Nusselt number Nu and the Reynolds number Re, and local
temperatures were measured over the Rayleigh range 4.2× 109 6Ra6 4.5× 1010. It is
found that the scaling behaviours of Nu(Ra), Re(Ra) and the temperature fluctuations
remain the same as those in the traditional cylindrical cells; both the global and local
properties of turbulent RB convection are insensitive to the change of cell geometry.
A visualization study, as well as local temperature measurements, shows that in spite
of the lack of the cylindrical core, there also exists a large-scale circulation (LSC)
in the annular system: thermal plumes organize themselves with the ascending hot
plumes on one side and the descending cold plumes on the opposite side. Near
the upper and lower plates, the mean flow moves along the two circular branches.
Our results further reveal that the dynamics of the LSC in this annular geometry
is different from that in the traditional cylindrical cell, i.e. the orientation of the
LSC oscillates in a narrow azimuthal angle range, and no cessations, reversals or net
rotation were detected.
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1. Introduction

Thermally driven convection exists extensively in astrophysical, meteorological and
geophysical applications. A typical ideal model for investigating this type of flow is
the so-called turbulent Rayleigh–Bénard (RB) convection, i.e. a fluid layer inserted
between the lower hot and the upper cold plates. Various aspects of this model
system have been widely studied during the past few decades (Ahlers, Grossmann
& Lohse 2009; Lohse & Xia 2010; Chilla & Schumacher 2012), aimed at revealing
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and understanding the global and local properties of thermal convection. There are
two control parameters in turbulent RB convection, namely the Rayleigh number Ra
and Prandtl number Pr. The intensity of thermal buoyancy over dissipation forces is
calculated by the Rayleigh number Ra = α1gH3/(νκ), where ∆ is the temperature
difference between the two plates, H is the height of the fluid layer, α, κ and ν

are respectively the expansion coefficient, thermal diffusivity and kinematic viscosity
of the convective fluid, and g is the gravitational acceleration. The fluid properties
are described by the Prandtl number Pr = ν/κ , which is the ratio of viscous and
thermal diffusions. In addition, the geometrical parameter of the convection cell is
reflected by the aspect ratio Γ = D/H, where D is the cell diameter. One important
response parameter that yields the heat-transfer efficiency of the system is the Nusselt
number Nu= JH/(χ∆), which compares the total heat flux J with that given by pure
conduction. Here, χ is the thermal conductivity of the working fluid. Another response
parameter is the Reynolds number, defined as Re = HU/ν, where U is the typical
velocity of the large-scale circulation (LSC) across the convection cell.

To date, many studies have been performed, both experimentally and numerically,
in cylindrical cells with a horizontal diameter comparable to their heights. For this
geometry, a LSC, in the form of a single cellular structure that spans the height of
the convection cell, emerges at sufficiently large values of Ra (Ahlers et al. 2009).
Such a flow structure is self-organized from thermal plumes that originate from the
upper and lower thermal boundary layers (Xi, Lam & Xia 2004), and its discovery
has stimulated considerable interest in the flow dynamics of turbulent RB convection.
These include the LSC’s azimuthal (Xi, Zhou & Xia 2006; He, Bodenschatz & Ahlers
2016), twisting (Funfschilling & Ahlers 2004) and sloshing (Brown & Ahlers 2009;
Xi et al. 2009; Zhou et al. 2009) motions, the flow cessations and reversals (Araujo,
Grossmann & Lohse 2005; Brown, Nikolaenko & Ahlers 2005; Xi & Xia 2007; Benzi
& Verzicco 2008; Sugiyama et al. 2010; Chandra & Verma 2013; Foroozani et al.
2017; Wang et al. 2018), the high-order flow modes (Mishra et al. 2011; Stevens,
Clercx & Lohse 2011a; Xi et al. 2016; Vogt et al. 2018), the superstructures (Pandey,
Scheel & Schumacher 2018; Stevens et al. 2018) and so on. As the dynamics of
turbulent RB convection is controlled by both the Rayleigh number and the Prandtl
number, there have been studies on the cessation and reversal dynamics of the LSC
in the high-Pr regime (see, for example, Xie, Wei & Xia 2013).

It has long been proposed that the LSC plays an essential role in the heat-transport
processes of turbulent convection (Ahlers et al. 2009; Chilla & Schumacher 2012).
Based on this viewpoint, many strategies have been put forward to try to modify or
enhance the total heat-transfer efficiency by modifying the LSC. Xia & Lui (1997)
stuck three layers of staggered fingers on the cell’s sidewall to suppress the LSC.
They visualized that the mean flow pattern changes from a single-roll structure to a
twisted asymmetric four-roll circulation, but the measured Nu–Ra scaling exponent
remains almost unchanged. In order to prevent the corner-flow rolls and better
accommodate the LSC, Song & Tong (2010) adopted horizontal cylindrical cells that
have a circular cross-section with no corners. They found that the measured Nu(Ra),
as well as Re(Ra), associated with the LSC are insensitive to the change of the cell
geometry, but the scaling behaviours of the temperature fluctuations at the cell centre
change dramatically. To enhance the total heat-transfer efficiency, Bao et al. (2015)
put forward the idea of partitioned thermal convection, i.e. inserting vertical partition
walls into the convection cell with thin gaps left open between the partition walls
and the upper/lower conducting plates. In this manner, they found that the convective
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flow in the partitioned cell becomes self-organized and more coherent, resulting in
an unprecedented heat-transfer enhancement.

In this paper, we take a different approach to modify the LSC. Instead of using
a traditional cylindrical cell, we make a new convection cell which has an annular
shape as shown in figure 1. For this geometry, the lack of a cylindrical core will
disturb the LSC from directly passing along the upper and lower conducting plates.
We note that such a geometry has been previously adopted to investigate the flow
instabilities and transitions (Wang et al. 2014). Very recently, Xie, Ding & Xia
(2018) simultaneously measured the large-scale flow structures and the heat-transfer
efficiency in an annular convection cell with a radius ratio η = ri/ro = 0.88 in the
Ra range 6.0 × 107 6 Ra 6 1.3 × 109, where ri and ro are the radii of the inner
and outer cylinders of the annular cell. They observed that due to a spontaneous
symmetry-breaking bifurcation, the system experiences a flow topology transition for
the LSC from a high heat-transfer efficiency quadrupole state to a less symmetric
dipole state with a lower heat-transfer efficiency. Due to the large radius ratio of their
annular cell, the observed bifurcation may be attributed to the strong confinement
effects (Huang et al. 2013) from the inner and outer cylinder sidewalls. Indeed, for
our present annular configuration with a relative small radius ratio (η ' 0.5), the
geometrical confinement effect is not so pronounced, and thus such a kind of flow
transition was not observed.

The remainder of this paper is organized as follows. We first give a detailed
description of the experimental apparatus and methods in § 2. Section 3 presents
key results of the global and local measurements, as well as a flow visualization.
Results obtained in the present annular cell are compared with those obtained in the
traditional cylindrical cells. Finally, the work is summarized in § 4.

2. Experimental apparatus and methods

Our experiments were carried out in an annular convection cell, which is sketched
in figure 1. The sidewalls of the annular cell consist of two upright coaxial Plexiglas
cylinders. The inner diameter of the outer cylinder is Do = 39.9 cm and the outer
diameter of the inner cylinder is Di = 19.9 cm. Both cylinders have an equal height
H = 39.7 cm and wall thickness of 5 mm. Thus, the corresponding aspect ratio is
Γ = Do/H ' 1 and the radius ratio is η = Di/Do ' 0.5. Degassed water is chosen to
be the working fluid, with a mean temperature of 40 ◦C, resulting in Prandtl number
Pr=4.3. During the measurements, the temperature difference ∆ across the fluid layer
was changed between 1.8 ◦C and 19.6 ◦C, leading to the Rayleigh number range 4.2×
109 6 Ra 6 4.5 × 1010, and we note that the Boussinesq conditions can be roughly
satisfied for such a temperature range (Funfschilling et al. 2005).

The upper and lower plates are made of pure copper. To avoid oxidation by water,
a thin nickel layer is electroplated on the fluid-contact surfaces of both plates. The
thickness of the upper plate is 2.5 cm. A water chamber (not shown), consisting
of four parallel circular channels of 1.5 cm in both width and depth, is constructed
with the upper plate and an attached Plexiglas plate of 2 cm in thickness. To cool
the upper plate, temperature-controlled circulating water from a thermal bath with a
temperature stability of 0.01 K (Polyscience AD15R-40-A12Y) is pumped through the
chamber. To keep the temperature of the upper plate uniform, the circulating water in
adjacent channels always flows in opposite directions. The lower plate has a thickness
of 1.5 cm and is heated by four Kapton film heaters of equal area. These heaters,
each in the shape of a sector with inner radius 20 cm and outer radius 40 cm, are

869 R5-3



X. Zhu, L.-F. Jiang, Q. Zhou and C. Sun

H 4

3

1

2

Di

Do

FIGURE 1. Schematic diagram of the annular convection cell adopted in the experiment.
Four temperature probes 1, 2, 3, 4, are used to monitor the bulk temperature. During the
measurements, we tilted the cell by 1.2◦ at position 4 to lock the orientation of the LSC.

parallel connected to a DC power supply with a 99.99 % long-term stability (SGI
330X15D). Four silicone O-rings are placed between the cylinder sidewalls and the
conducting plates to prevent fluid leakage. The upper and lower plates are held
together by sixteen stainless steel rods (not shown). To ensure excellent thermal
isolation from the surrounding environment, electrical heating jackets are placed
around the outside of the outer cylinder and the inside of the inner cylinder, and
several layers of Styrofoam are used to fill the space between the heating jackets
and sidewalls. The temperature of the heating jackets was kept at 40 ◦C during the
measurements, which is the same as the mean temperature of the working fluid. This
setup ensures the system has a temperature stability better than 0.05 ◦C.

The temperatures of the upper and lower conducting plates are measured by 16
thermistors (Model 44032, Omega) of diameter 2 mm (eight in each plate). These
thermistors are embedded in the upper and lower plates, respectively, at 3Do/8 from
the plate centre and approximately 4 mm away from the fluid-contact surface. Local
temperatures in the fluid are measured by four thermistors (GAG22K7MCD419,
Measurement Specialties) of diameter 400 µm. As shown in figure 1, these
thermistors are threaded through stainless steel capillary tubing with an inner
diameter of 1 mm, and are placed at the mid-height of the cell. They have an
equal azimuthal separation and an equal distance from the outer and inner sidewalls.
The thermistors are labelled as 1, 2, 3, 4, which also represent their azimuthal
positions. The orientation of the LSC may have some azimuthal movement over time
(Funfschilling & Ahlers 2004; Xi et al. 2006). To restrain the azimuthal motion of
the LSC, we tilted the annular cell by 1.2◦ at position 4. The temperatures of the
16 large thermistors and 4 small thermistors are recorded sequentially by a 6 1

2 -digit
multimeter at a sampling frequency of ∼0.75 Hz. During the measurements, it took
at least 8 hours for the convection system to reach the steady state, and a typical
measurement for each Ra lasted over 10 hours. In the present study, finite plate
conductivity corrections (Verzicco 2004) were not performed, but we find that this
will not change our main conclusions.
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FIGURE 2. (a) Measured Nu as a function of Ra. Experimental data: our data of the
annular cell (solid circles), Funfschilling et al. (2005) (cylindrical cells of Γ = 1 and
Pr = 4.38, down triangles), Sun et al. (2005) (cylindrical cells of Γ = 2 and Pr = 4,
diamonds), and Zhou et al. (2012) (rectangular cells of Γ = 2 and Pr = 5.3, pluses).
Numerical data: Stevens, Lohse & Verzicco (2011b) (cylindrical cells of Γ = 0.5 and
Pr = 0.7, squares), Wagner, Shishkina & Wagner (2012) (cylindrical cells of Γ = 1 and
Pr= 0.786, up triangles). GL theory: Stevens et al. (2013) (the dashed line). The red line
gives the best power-law fit to our data, Nu= 0.08Ra0.32. (b) Compensated NuRa−0.3 for
the same data sets.

3. Results and discussion

We first examine the effects of the annular geometry on the global heat-transfer
efficiency of the system. Figure 2(a) shows the measured Nusselt number Nu as
a function of the Rayleigh number Ra (solid red circles). The Nu–Ra data can be
described well by an effective power law Nu= 0.08Ra0.32±0.01, as shown by the solid
line in the figure. There have been a large number of experimental and numerical
studies focusing on the Ra-dependence of Nu for various convecting fluids and cell
geometries (Ahlers et al. 2009; Chilla & Schumacher 2012). For comparison, we also
plot in figure 2 some earlier experimental (Funfschilling et al. 2005; Sun et al. 2005;
Zhou et al. 2012) and numerical (Stevens et al. 2011b; Wagner et al. 2012) results,
as well as the prediction of the Grossmann–Lohse (GL) theory (Stevens et al. 2013).
It is seen that our present data collapse well on top of other data sets. This agreement,
which is particularly evident from the compensated Nusselt number NuRa−0.3 plotted
in figure 2(b), demonstrates that the Ra-dependence of Nu is insensitive to the change
of cell geometry. Note that the scaling exponent in figure 2 is also consistent with
those measured in two-dimensional numerical convection (Huang & Zhou 2013; van
der Poel, Stevens & Lohse 2013; Zhang, Zhou & Sun 2017; Zhang et al. 2018).
The present Ra range is still in the classical regime of turbulent RB convection
(Ahlers et al. 2009) where the global heat-transfer efficiency is mainly dominated by
thermal boundary layers. Thus, such an agreement in figure 2 further implies that the
boundary-layer dynamics remains almost unchanged for the annular geometry.

In spite of the lack of the cylindrical core for the annular geometry, as we shall
see below, a flow visualization study and local temperature measurements both show
that there also exists a LSC in the system. As the largest flow structure, the velocity
of the LSC can be used to define the Reynolds number of the system. An important
issue in the study of turbulent convection is to reveal the Ra-dependence of Re, as
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FIGURE 3. (a) Plume-based Reynolds number Re as a function of Ra. The dashed
line represents the best power-law fit to the data, Re = 0.11Ra0.47. Inset: Temperature
autocorrelation function CT(τ ) of a single thermistor mounted on the lower conducting
plate at azimuthal position 4 where hot plumes are emitted. The data were measured
at Ra = 3.0 × 1010. (b) The temperature standard deviation σ normalized by the global
temperature difference ∆ as a function of Ra, measured by the small thermistors at
the mid-height of the cell (circles) and the large thermistors mounted on the upper
(squares) and lower (triangles) conducting plates. The dashed lines are the power-law fits
to the corresponding data: σ/∆= 0.24Ra−0.14 (mid-height), σ/∆= 0.04Ra−0.11 (lower) and
σ/∆= 0.02Ra−0.10 (upper).

it reflects the underlying driving mechanism and energy budget (Grossmann & Lohse
2002). Experimentally, the circulation turnover time of the LSC is often adopted to
obtain Re. As the LSC is, in essence, a coherent motion of thermal plumes, the
plume turnover time τp is usually used to identify the LSC turnover time (Sun &
Xia 2005; Brown, Funfschilling & Ahlers 2007). In our present configuration, a
well-defined oscillation can be observed for the autocorrelation functions CT(τ ) of
the temperature T(t), measured by the large thermistors embedded in the upper and
lower plates at the azimuthal positions 1 and 4 where cold/hot plumes are emitted
from or impact on the conducting plates. In the inset of figure 3(a), we plot a
sample CT(τ ) curve obtained at Ra = 3.0 × 1010. It is seen that CT(τ ) has a peak
centred at the origin and a second smaller peak at a later time which is identified
with one turnover time τp of thermal plumes. The corresponding Reynolds number is
hence defined as Re= (2+π)L2/τpν, where (2+π)L is chosen to be the circulation
path length of the LSC in the annular cell (see figure 4 for the circulation path of
the mean wind in our present configuration), and τp is obtained by averaging over
data for the embedded thermistors at the azimuthal positions 1 and 4 in both the
conducting plates. The plume-based Re calculated from the measured τp is plotted
as a function of Ra in figure 3(a). Again, the Re–Ra data can be described well
by an effective power law Re = 0.11Ra0.47±0.02, as shown by the dashed line in the
figure. We note that this exponent is slightly smaller than the value 0.5 of a free-fall
velocity, and the deviation may originate from the evolution in the circulation path of
the LSC, as indicated by Niemela & Sreenivasan (2003) and Sun & Xia (2005). We
further note that the present exponent in the annular cell is in general agreement with
those found in cylindrical cells of water (Qiu & Tong 2002) and helium (Chavanne
et al. 2001). This agreement illustrates that the scaling behaviour of Re(Ra) remains
almost the same under different cell geometries, and thus the driving mechanism of
the convective flows is insensitive to the boundary effect of the container.

869 R5-6



Turbulent Rayleigh–Bénard convection in an annular cell

FIGURE 4. A schematic and four shadowgraph images showing the LSC and the
spatial distribution of thermal plumes at Ra = 4.5 × 1010. The purple frames mark
the visualization windows at different positions of the annular cell, and the arrows
represent the direction of the LSC. The corresponding supplementary movie is available
at https://doi.org/10.1017/jfm.2019.246.

To see how the annular geometry affects the statistical properties of the temperature
fluctuations, we examine in figure 3(b) the Ra-dependence of the normalized
temperature standard deviations, σ/∆, for data measured at the mid-height of the
cell and inside the plates. Here, σ is obtained by first calculating measurements from
each thermistor and then spatially averaging over data for all embedded thermistors
in the respective plates. The lower plate result (triangles) has a larger magnitude
than the upper plate (squares), which is presumably because different temperature
boundary conditions are applied to the two plates, i.e. constant heating power is
supplied to the lower plate while the upper plate’s temperature is regulated by a
refrigerated circulator. The dashed lines in the figure are the power-law fits to the
corresponding data: σ/∆ = 0.24Ra−0.14±0.03 (mid-height), σ/∆ = 0.04Ra−0.11±0.03

(lower) and σ/∆ = 0.02Ra−0.10±0.03 (upper). One sees that within our experimental
uncertainties the three data sets essentially yield similar scaling exponents, suggesting
that the temperature fluctuations in the bulk fluid and inside the plates are governed by
the same local temperature scale. As the thermistors mounted on the plates are more
sensitive to the ejections/impacts of thermal plumes, such a temperature scale may be
related to the contributions from thermal plumes. Moreover, the mid-height exponent
−0.14± 0.03 is consistent with previous experimental results obtained in cylindrical
cells (Daya & Ecke 2001; Sun & Xia 2007), and also agrees well with the theoretical
predictions of the mixing-zone model (Castaing et al. 1989) and the GL theory
(Grossmann & Lohse 2004). This agreement indicates that the scaling behaviours of
the local temperature fluctuations in the annular cell remain approximately the same as
those in the cylindrical cell; they are also insensitive to the change of cell geometry.
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FIGURE 5. PDFs of the temperature fluctuations δTi(t) normalized by their respective
standard deviations σi measured by the small thermistors (i=1,2,3,4) at the mid-height of
the annular cell for Ra= 6.9× 109 (circles), 1.6× 1010 (squares) and 3.4× 1010 (triangles).

We next turn to the large-scale flow structures in our present apparatus. A standard
shadowgraph method (Sun & Zhou 2014) is adopted to visualize the flow fields
at different locations of the annular cell; the corresponding shadowgraph images are
shown in figure 4. The purple frames in the figure mark the visualization windows and
the arrows represent the direction of the LSC. The images show that thermal plumes
organize themselves with the ascending hot plumes on the left and the descending
cold plumes on the right. Near the upper plate, the mean flow moves from left to
right along the two circular branches, while it moves from right to left close to the
lower plate. A schematic of such a large-scale flow structure in the annular cell is
illustrated in figure 4.

Such a LSC can also be revealed by the local temperature measurements. Figure 5
plots the probability density functions (PDFs) of the normalized temperature
fluctuations δTi(t)/σi (i = 1, 2, 3, 4) measured by the four small thermistors at
the mid-height of the cell for three different Ra, where δTi(t) = Ti(t) − 〈Ti(t)〉, with
〈· · ·〉 denoting the time average and σi the standard deviation of Ti(t). One sees that
the temperatures measured at different positions show quite different signatures. The
temperatures at position 2 are skewed to low temperature and those at position 4
are skewed towards high temperature. The asymmetry of these PDFs originates from
the rising hot or falling cold plumes, which is consistent with the coherent motions
of plumes revealed in figure 4. On the other hand, the PDFs at positions 1 and 3
are more symmetric relative to the zero mean, and have exponential-like tails. These
are very similar to those found at the centre of the cylindrical cell (Castaing et al.
1989; Du & Tong 2001) and the rectangular cell (Zhou & Xia 2013), implying that
thermal plumes rarely appear at these positions and there is no dominant flow in
these regions.

4. Conclusions

To summarize, we have experimentally performed a systematic investigation of
turbulent RB convection using water in an annular cell with a radius ratio η' 0.5 and
a Prandtl number Pr=4.3 over the Rayleigh number range 4.2×109 6Ra64.5×1010.
The scaling behaviours of the measured Nusselt number Nu(Ra), the Reynolds
number Re(Ra), and the temperature fluctuations are all found to be insensitive to
the boundary effects of the container, i.e. both the global and local properties remain
almost unchanged for the annular geometry. In spite of the lack of the cylindrical
core for the annular geometry, both the visualization study and local temperature

869 R5-8



Turbulent Rayleigh–Bénard convection in an annular cell

measurements show that there also exists a large-scale flow structure in the system:
the hot plumes move upwards along one side of the annular cell and the cold plumes
move downwards along the opposite side. Near the upper and lower plates, the mean
flow moves along the two circular branches.

Recently, Xie et al. (2018) reported for the first time a global bifurcation induced
by spontaneous symmetry-breaking of the mean flow in annular RB convection.
However, such a bifurcation was not observed in the present study, e.g. the transition
in the Nu–Ra relation, as reported by Xie et al. (2018), was absent in our data. Of
course, the parameter range studied by Xie et al. (2018) and the present work differ,
i.e. our Rayleigh number range is approximately one order of magnitude larger than
that used by Xie et al. (2018), and the cell geometry, especially the radius ratio of
the annular cell, also differs. These observations suggest that the flow dynamics in
turbulent convection in an annular geometry has a strong dependence on the cell
geometry and the working range of Ra. Therefore, more work needs to be done to
fully understand turbulent convection in an annular geometry.

Note that the annular cell was tilted during our measurements. It is well appreciated
for the cylindrical cell that cell tilting affects both the structure and dynamics of the
LSC significantly (see, for example, Chillà et al. 2004). To reveal the tilting effects
here, we also carried out measurements in a levelled annular cell for a limited range
of Ra, and our preliminary results reveal that the difference in Nu due to cell tilting
is less than 1 % and cell tilting does not change the structures of the LSC. By using
the multithermal-probe method (Brown et al. 2005; Xi & Xia 2007), however, the
azimuthal motion of the LSC is found to be different from the ones observed in
the LSC dynamics of cylindrical cells, i.e. the orientation of the LSC oscillates in
a narrow azimuthal angle range, and no cessations and reversals were detected. In
addition, the net rotation of the LSC, as observed by Brown et al. (2005) and Xi
et al. (2006) in a cylindrical cell, is also absent in the annular cell. These results
further confirm that the dynamics of the LSC is sensitive to the geometrical effects of
the container. In our future study, we will focus on the LSC dynamics of the annular
convection cell in greater detail.
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