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Abstract 

Drug discovery is the complex endeavor of identifying therapeutic compounds that are both safe and effective from a vast and ever-increasing 
chemical space. The high-throughput screening systems that have been used to identify hits have largely been replaced by rational drug discovery 
using expert-crafted machine learning algorithms to assist with hit identification, target prioritization, and lead optimization. However, persistently 
low clinical trial success rates continue to keep the cost of drug development high. This review outlines the history of machine learning in preclinical 
drug discovery of small molecules and highlights how parallel advancements in pharmacology, bioinformatics, and artificial intelligence (AI) 
have converged to create efficient AI-powered drug discovery tools. More specifically, biology has become digitized through modern methods for 
multi-omic data collection. Multi-omic data represents in-depth collections of biomarkers derived from DNA (genomics), RNA (transcriptomics), 
proteins (proteomics), metabolites (metabolomics) and lipids (lipidomics). These disparate datasets can be combined through neural networks and 
linked with hidden Markov models to create an interactome which attempts to mimic human systems biology within computer-based algorithms. 
Integration of transformer-powered deep learning models further improve these systems by overcoming the limitations of reductionist strategies 
for drug discovery. As customized, deep learning architectures become increasingly adopted, AI-driven predictive biology will continue to improve 
and soon become a mainstay in drug development. 
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Introduction 
The pharmaceutical industry has witnessed a persistent de-

cline in productivity despite significant scientific and technological 
advancements during the seventy years. Since 1950, the number of 
new drugs approved by the FDA has been nearly cut in half every 
decade, resulting in an eighty-fold decline in inflation-adjusted effi-
ciency. [1]. The average timeline from initial discovery to regulatory 
approval ranges between ten to fifteen years [2], with per-drug de-
velopment costs ranging widely from $113 million to over $6 bil-
lion [3]. Scannell, et al. (2012) describe the troubling rise in drug 
development costs and declining returns as “Eroom’s Law,” which 
is Moore’s Law spelled backwards.

Amidst the challenges facing modern drug development, the 
pivotal question emerges of how artificial intelligence (AI) can 
help address the productivity problem within the pharmaceutical 
industry? To date, AI has been integrated within the target-based 
pharmacology paradigm through high throughput virtual screens, 
absorption, distribution, metabolism, and excretion (ADME) pre-
dictions, and in lead optimization. Better and smarter AI will un-
doubtedly continue to improve drug-target specificity predictions. 
However, these machine learning applications do not address the 
structural issues underlying Eroom’s Law, namely, that target-based 
approaches do not capture the complexity of biological systems and 
disease processes. 
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Productivity in the pharmaceutical industry has been a per-
sistent challenge throughout the history of drug development. Drug 
discovery has evolved significantly over the past century, transi-
tioning from a largely serendipitous, phenotype-based approach 
to a target-based paradigm due to advances in molecular biology 
and genomics that promised increased efficiency and specificity 
[4]. However, despite the dominance of target-based approaches, 
only 9.4% of clinically tested small-molecule drugs have been FDA 
approved using these newer methods [5]. This suggests that tar-
get-based strategies may not be as effective in yielding successful 
small molecule drugs as once hoped. 

Phenotypic Drug Discovery
There has been a resurgence in phenotypic drug discovery 

(PDD) in recent years. PDD identifies potential therapeutic com-
pounds based on observable change in cellular or organismal phe-
notypes without requiring prior knowledge of specific drug targets 
[6]. This approach has been instrumental in discovering drugs with 
novel or poorly understood mechanisms as PPD methods begin to 
ddress the profound complexity of biological systems.

 Breakthroughs in the mid 20th century ranging from the elu-
cidation of the structure of DNA to an improved understanding of 
drug-target interactions has catalyzed the shift from empirical drug 
discovery to target based approaches. The revival of phenotypic 
drug discovery is driven by the digitization of biological informa-
tion and deep neural networks that can manage these extremely 
large datasets. Recent advancements in PDD have been propelled 
by the development of sophisticated in vitro models, high-content 
imaging technologies, and comprehensive mechanism-of-action 
profiling techniques [6]. Additionally, the integration of human 
based phenotypic platforms across the drug discovery pipeline en-
hances the process of hit triage, prioritization, and the elimination 
of compounds with undesirable mechanisms of action [7].

Despite these promising advancements, PDD faces challenges 
including efficient handling of data complexity and target deconvo-
lution. The integration and analysis of massive biological datasets 
from high-content imaging and multi-omic technologies are diffi-
cult and time-consuming. Identifying the precise molecular targets 
of active compounds, a process known as target deconvolution, also 
remains a complex and expensive endeavor. However, these chal-
lenges can now be mitigated by leveraging the strengths of trans-
former-powered deep learning architecture.

AI Applications in Drug Discovery
Historically, neural networks were not the predominant ma-

chine learning (ML) technique in drug discovery like they are today. 
Instead, methods such as Support Vector Machines (SVMs) and de-
cision trees were favored for their robustness when applied to com-
pound classification, property prediction, and virtual screening [8]. 
SVMs are particularly adept at handling nonlinear problems and 
operate efficiently within high-dimensional feature spaces such as 
the vast chemical space [9] diagnostic image analysis in histology 
[10].

Decision trees have also been invaluable for data mining in hit 
discovery, drug metabolism, toxicology, and drug surveillance; they 
can handle diverse data formats and provide visual model repre-
sentations, which facilitate the interpretation of complex biological 
data [11]. For virtual screening, decision trees excel in ligand-based 
approaches by delivering computationally efficient results that in-
form the chemical database queries and generate hypotheses about 
molecular actions.

Building upon the limitations of these foundational machine 
learning techniques, transformer-powered deep neural networks 
introduced a paradigm shift in searching the chemical space. The 
transformer architecture, originally developed for natural language 
processing (NLP), relies on attention mechanisms to process input 
data, addressing the parallelization problem of recurrent neural 
networks (RNNs) and long short-term memory networks (LSTMs) 
[12]. The self-attention mechanism enables capture of long-range 
dependencies within the data, a feature which renders neural net-
works applicable to a wide range of complex biological problems.

With modern AI tools, it has become feasible to build complex 
assays that leverage systems biology, capturing intricate properties 
through multiparametric readouts like gene expression profiles, 
protein interaction networks, metabolic flux analysis, and cellu-
lar phenotypic assays. Unlike traditional ML methods that often 
require extensive feature engineering and are limited in handling 
diverse and large-scale datasets, transformers excel in automatic 
feature extraction and integration of heterogeneous data sources 
[13]. This capability is particularly beneficial in drug discovery, 
where data types range from high-content imaging to multi-omic 
biomarker profiling and patient-derived metadata.

Furthermore, transformers facilitate the integration of multi-
modal data, combining information from various sources to provide 
a comprehensive view of biological systems through embeddings 
in a latent space. They can be applied to identify novel drug tar-
gets, predict compound efficacy, identify non-obvious phenotypic 
associations and assess potential toxicity with far greater accuracy. 
The versatility of transformers also extends their applications into 
generative tasks, for de novo design of new molecules with desired 
therapeutic properties [14]. 

AI-powered Drug Discovery
As an example of these developments from the authors’ labora-

tory, GATC Health employs a comprehensive AI-powered pipeline 
to enhance the preclinical drug discovery process (Figure 1). Assay 
development begins with a pretrained AI “head” that uses predic-
tive modeling for selecting disease-relevant models. Following sys-
tems biology principles, these assays attempt to balance tractability 
and complexity by generating measurable, AI-deconvolvable results 
including gene expression profiles, protein interaction networks, 
metabolic flux analysis, and cellular phenotypic assays, while 
capturing the intricate interactions of biological systems. In the 
High-Throughput Phenotypic Screening step, AI-driven data anal-
ysis of assay data enables efficient identification of hit compounds 
for validation in in-vivo models. Mechanism of Action studies ben-
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efit from AI-informed target identification and pathway analysis 
and provide deeper insights into drug interactions and therapeu-
tic mechanisms for rational drug design. During lead optimization, 
AI-guided molecular design facilitates the optimization of pharma-
cokinetic properties, considering factors such as bioavailability, 

off-target effects, mode of administration, and metabolic stability, 
for the development of robust drug candidates. Finally, the Investi-
gation New Drug (IND) application process is streamlined through 
AI-supported regulatory compliance and preclinical safety testing, 
alongside the preparation of comprehensive clinical protocols.

Figure 1: AI-Powered Phenotypic Drug Discovery Pipeline: Pretrained AI “Heads” streamlines preclinical drug discovery efforts.

The integration of AI into the drug discovery pipeline offers a 
solution to the persistent productivity challenges highlighted by 
Eroom’s Law. Leveraging the transformer’s ability to handle com-
plex, multimodal biological data enables the design of phenotypic 
assays that better capture the intricacies of biological systems and 
disease processes. As AI becomes increasingly integrated through-
out the entire process, the expectation is that this comprehensive 
application not only enhances the precision and efficiency of each 
stage but also accelerates timelines and reduces costs. Although 
challenges like interpretability and transparency remain, fully em-
bracing AI-driven methodologies may ultimately serve to reintro-
duce serendipity to an otherwise highly regulated discipline.
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