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We investigate the coupling effects of the two-phase interface, viscosity ratio and density
ratio of the dispersed phase to the continuous phase on the flow statistics in two-phase
Taylor–Couette turbulence at a system Reynolds number of 6 × 103 and a system Weber
number of 10 using interface-resolved three-dimensional direct numerical simulations
with the volume-of-fluid method. Our study focuses on four different scenarios: neutral
droplets, low-viscosity droplets, light droplets and low-viscosity light droplets. We find
that neutral droplets and low-viscosity droplets primarily contribute to drag enhancement
through the two-phase interface, whereas light droplets reduce the system’s drag by
explicitly reducing Reynolds stress due to the density dependence of Reynolds stress.
In addition, low-viscosity light droplets contribute to greater drag reduction by further
reducing momentum transport near the inner cylinder and implicitly reducing Reynolds
stress. While interfacial tension enhances turbulent kinetic energy (TKE) transport, drag
enhancement is not strongly correlated with TKE transport for both neutral droplets and
low-viscosity droplets. Light droplets primarily reduce the production term by diminishing
Reynolds stress, whereas the density contrast between the phases boosts TKE transport
near the inner wall. Therefore, the reduction in the dissipation rate is predominantly
attributed to decreased turbulence production, causing drag reduction. For low-viscosity
light droplets, the production term diminishes further, primarily due to their greater
reduction in Reynolds stress, while reduced viscosity weakens the density difference’s
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contribution to TKE transport near the inner cylinder, resulting in a more pronounced
reduction in the dissipation rate and consequently stronger drag reduction. Our findings
provide new insights into the physics of turbulence modulation by the dispersed phase in
two-phase turbulence systems.

Key words: turbulence simulation, drag reduction, multiphase flow

1. Introduction

Two-phase liquid–liquid flows, often referred to as emulsions, involve the presence of two
immiscible liquids and play a significant role in various natural and industrial processes.
Turbulent emulsions, in particular, introduce further complexity due to the presence of
dispersed phases. The interaction between the continuous phase and the dispersed phase
leads to additional complexities, resulting in a wide range of phenomena and dynamics
influenced by the properties of the phases and the explored parameter regimes (Lemenand
et al. 2017; Yi et al. 2023). In recent decades, turbulent emulsions have found extensive
applications in fields such as petroleum, food, pharmaceuticals and cosmetics (Spernath &
Aserin 2006; Mcclements 2007; Wang et al. 2007; Kilpatrick 2012), garnering significant
interest (Rosti, Brandt & Mitra 2018; Yi et al. 2023; Ni 2024). However, our understanding
of how turbulence is influenced by the dispersed phase in turbulent emulsions remains
limited.

Due to the presence of the two-phase interface and disparities in liquid properties
between the two phases, experimental observation of behaviour in turbulent emulsions
becomes particularly challenging. Current experimental research primarily focuses on
microscopic droplet formation, size distribution and the macroscopic response of global
transport (Bakhuis et al. 2021; Yi, Toschi & Sun 2021; Wang et al. 2022b; Yi et al. 2022).
Meanwhile, related simulations have been employed to investigate droplet size distribution,
primarily in homogeneous and isotropic turbulence, with a specific emphasis on how
turbulence affects droplet breakup behaviour (Mukherjee et al. 2019; Vela-Martín & Avila
2022). The feedback of droplets on turbulence has recently been studied in homogeneous
shear turbulence. Dodd & Ferrante (2016) investigated how droplet deformation, breakup
and coalescence affect in the temporal evolution of turbulent kinetic energy (TKE). They
showed that droplet coalescence reduces the total interfacial surface area, causing a
decrease in surface energy and an increase in local kinetic energy. The presence of droplets
acts as a sink in the TKE of the bulk fluid, as the dispersed phase was found to slow down
the dissipation of TKE compared with the continuous phase (Rosti et al. 2019). The effect
of droplets and the role of their viscosity on turbulence in homogeneous and isotropic
turbulent flows have also received recent attention. The energy is transported consistently
from large to small scales by the two-phase interface, and the total interface area is
directly proportional to the amount of energy transported. Increasing the dispersed phase
viscosity would reduce the amount of energy being transported (Crialesi-Esposito et al.
2022). Correspondingly, large velocity gradients are found across the two-phase interface
and will gradually disappear as the viscosity of the dispersed phase increases (Farsoiya
et al. 2023). These findings provide a deeper understanding of the effect of droplets on
homogeneous turbulence. However, since the studied systems are unbounded, the results
cannot be applied directly to wall-bounded turbulence, where strong inhomogeneity and
anisotropy could develop due to the boundary layer. This introduces the potential for
different observations in both phases.
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In contrast to the relatively uniform turbulence dissipation observed throughout
different regions in homogeneous turbulence, wall-bounded turbulence exhibits a distinct
characteristic where approximately half of the dissipation occurs predominantly in the
immediate vicinity of walls (Jiménez 2012). Recent studies in wall-bounded laminar
flows have investigated the modulation of the two-phase interface on the system’s
drag by allowing droplets to coalesce numerically in the Taylor–Couette (TC) device
(Hori et al. 2023) or prohibiting droplet coalescence in planar Couette flow (De Vita
et al. 2019). The drag enhancement caused by the dispersed phase is attributed to the
interfacial contribution, and coalescence could effectively decrease the interfacial area,
thus weakening the drag enhancement effect. To investigate drag modulation by different
dispersed phases, our previous work (Su et al. 2024) examined turbulence modulation
induced by dispersed phases with varying density and viscosity through three-dimensional
direct numerical simulations in turbulent TC flow. We derived a momentum transport
formula, revealing that the two-phase interface consistently enhances drag. Reducing the
density or viscosity of the dispersed phase decreases the contributions of the advection
and diffusion terms, leading to reduced drag. However, that work only encompassed
the effects of the dispersed phase on global properties, leaving an unexplored area in
understanding the effect on the local statistical properties of turbulent flow. The effect
of the dispersed phase on the production and dissipation of turbulence remains unknown.
This motivates further exploration in this new work to gain a comprehensive understanding
of the modulation of the transport of TKE by examining the effects of the dispersed phase
on the local statistical properties.

In this work, we conducted a comprehensive study on the modulation of statistical
properties of turbulence induced by dispersed phases in the TC system. To achieve this,
we employed an interface-resolved volume-of-fluid (VOF) method, which allows us to
resolve the interface between the two phases and solve the governing equations in a
single-equation formulation. This approach enables us to perform operations similar to
those in single-phase flow, facilitating effective comparisons and determining the specific
effects of the dispersed phase.

We aim to explore the behaviour of turbulent emulsions in a semi-dilute regime, with a
specific focus on the potential impact of droplets possessing lower density and viscosity
compared with the continuous phase. Through numerical simulations, we can disentangle
the effects of the two-phase interface, the density and the viscosity of the dispersed phase
on turbulence modulation, uncovering their intertwined coupling. The article is organised
as follows. In § 2, the numerical method and settings are described. In § 3, turbulence
modulation is discussed based on momentum budget analysis, turbulence fluctuation
analysis and TKE budget analysis. Finally, conclusions are drawn in § 4.

2. Numerical method and setting

We conducted interface-resolved three-dimensional direct numerical simulations to
investigate the two-phase fluid–fluid turbulence in a TC system. These simulations were
performed using a VOF method with a piecewise-linear interface calculation (PLIC)
algorithm implemented in the interFoam solver of the open-source OpenFOAM v8
(Rusche 2003; Chen, Zhao & Wan 2022). The robustness of OpenFOAM in simulating
single-phase TC turbulence and two-phase TC turbulence has been demonstrated in our
previous works (Xu et al. 2022, 2023; Su et al. 2024).

We consider two immiscible and incompressible fluids confined between two coaxial
cylinders whose radii are ri (inner) and ro (outer). In this work, we fix the outer cylinder
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while allowing the inner cylinder to rotate with a constant angular velocity ωi. The
two-phase incompressible flow is governed by the Navier–Stokes equations

∇ · u = 0, (2.1)

∂t(ρu) + ∇ · (ρuu) = −∇p + ∇ · τ + f , (2.2)

where u is the velocity field, p is the pressure and τ = μ(∇u + (∇u)T) is the viscous
stress. Here ρ and μ are the density and viscosity of the combined phase. The phase
fraction α is introduced to characterise the variable density and viscosity, i.e. ρ = αρd +
(1 − α)ρf and μ = αμd + (1 − α)μf , where ρ and μ with subscripts f and d denote the
density and viscosity of continuous phase and dispersed phase. The continuum surface
force method, as proposed by Brackbill, Kothe & Zemach (1992), is adopted in this study
to describe the interfacial tension, i.e. f = σκ∇α, where σ denotes the surface tension
coefficient and κ = −∇·(∇α/|∇α|) represents the interface curvature.

In the VOF method, the phase fraction α is utilised in each cell to characterise the
distribution of the two phases. The range of α is from zero to one, where α = 0 represents
the continuous phase, α = 1 represents the dispersed phase, and 0 < α < 1 represents the
interface region. The evolution of α is governed by the transport equation

∂tα + ∇ · (αu) = 0. (2.3)

Because of the continuity of the phase fraction, the interface between the two phases tends
to become smeared. To mitigate this issue, a PLIC-based algorithm has been recently
implemented to capture the interface accurately. This algorithm involves representing
the interface between the two phases by employing surface cuts, which split each cell
to match the phase fraction in that cell. The surface cuts are oriented according to the
phase fraction gradient. The phase fraction on each cell face is then calculated from the
amount submerged below the surface cut. Based on this algorithm, the resolved interface
region (0 < α < 1) could be confined within a single layer of grid cells between the two
phases to ensure the sharpness of the interface. It is important to note that this algorithm
may encounter difficulty handling certain cells when the cut position is unclear or when
multiple interfaces exist. In such cases, the interface compression approach proposed by
Weller (2008) is applied to those cells. In this approach, an artificial compression term,
which is only active in the vicinity of the interface, is added to the transport equation to
prevent interface smearing based on counter-gradient transport, i.e.

∂tα + ∇ · (αu) + ∇ · [α(1 − α)uc] = 0, (2.4)

where uc = cu∇α/|∇α| with c being the compression factor. In addition, the
multidimensional universal limiter with explicit solution (MULES) algorithm is
implemented to ensure that the phase fraction α remains within the strict bounds of 0
and 1. The combination of the PLIC-based algorithm with the interface compression
approach allows the present approach to be easier to implement even with an unstructured
mesh, thereby increasing the robustness of the solutions. Therefore, this PLIC-based VOF
method has been applied in our study to deal with the two-phase turbulence in the TC
system.

To minimise computational costs without compromising the accuracy of our results,
we selected a rotational symmetry of order 6 (i.e. the azimuthal angle of the simulated
domain is π/3) and an aspect ratio of Γ = L/d = 2π/3 in the simulated TC system,
where d corresponds to the gap width between the cylinders and L represents the axial
length. This choice has been validated for both single-phase and multiphase TC turbulence
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(Brauckmann & Eckhardt 2013; Spandan, Verzicco & Lohse 2018; Assen et al. 2022). The
curvature of the TC system is characterised by the ratio η = ri/ro = 0.714. The Taylor
number, denoted as Ta = χ(ro + ri)

2(ro − ri)
2ω2

i /(4ν2
f ), is fixed as 5.49 × 107, where

χ = [(ri + ro)/(2
√

riro)]4 and νf = μf /ρf . The system Weber number, denoted as We,
is given by ρf u2

τ d/σ , with a fixed value of 10. The uτ is the friction velocity defined as√
τw/ρf , where τw represents the shear stress at the inner wall for single-phase flow. The

frictional Reynolds number at the inner cylinder, denoted as Reτ = ρf uτ d/μf , is fixed as
295.39. The system Reynolds number Re = ρf uid/μf is fixed as 6000, where ui = riωi is
the velocity of the inner cylinder.

Physically, the length scales of fluid–fluid two-phase turbulence involved can range
from the largest scale of the problem down to the Kolmogorov scale of turbulence, and
even further to the molecular scale of coalescence and breakup events at the interface.
Specifically, during the coalescence event, the length scales associated with film drainage
can be as small as a few hundred nanometres or less (Kamp, Villwock & Kraume 2017).
Ideally, it would be advantageous to conduct simulations that fully resolve all scales,
similar to the study of single-phase turbulence. However, this approach is not feasible
for fluid–fluid two-phase turbulence due to the significant separation between the largest
flow scale and the smallest interfacial scale, which can span up to eight to nine orders
of magnitude. Such a wide range of scales would require tremendous computational
resources. As a result, the conventional approach is to avoid resolving the molecular
scales at the interface and instead focus on resolving all turbulence scales, from the larger
macroscopic scale down to the Kolmogorov length scale (Soligo, Roccon & Soldati 2019).
In the VOF method, the coalescence and breakup of droplets is handled implicitly and two
separate interfaces automatically merge when they occupy the same computational cell.
This process is commonly referred to as numerical coalescence. Given that fully resolving
film drainage and turbulence is prohibitively expensive from a computational point of view.
An alternative approach is to use a subgrid-scale model to determine whether the droplets
will coalesce. However, such approaches are highly dependent on the underlying film
drainage model used and therefore their predictive capabilities are uncertain. As noted in
the review of Soligo, Roccon & Soldati (2021), there has been no fully validated method to
accurately model film drainage in two-phase turbulence. In our simulations we do not use
a film drainage model and allow the droplets to numerically coalesce, which is generally
acceptable in two-phase flow simulations in dilute and semi-dilute regimes (Rosti et al.
2019; Crialesi-Esposito et al. 2022).

No-slip and impermeable boundary conditions are imposed in the radial direction,
while periodicity is imposed in the axial and azimuthal directions. The inner and outer
cylinders are subjected to a Neumann boundary condition for the phase fraction, resulting
in a default contact angle of 90◦. The maximum Courant–Friedrichs–Lewy number is set
to be 0.2. First, a single-phase case is simulated to initialise the velocity field. Once a
well-developed flow with a pair of Taylor rolls is obtained, the simulation is restarted,
in which the spheres of diameter 0.2d containing the dispersed phase are uniformly
positioned in the domain. Two different volume fractions of the dispersed phase, ϕ = 5 %
and ϕ = 10 %, are considered. The dispersed phase undergoes continuous coalescence and
breakup, gradually adapting to the flow field. All the presented statistics are collected for at
least 3 × 102 large eddy turnover times ((ro − ri)/(ωiri)) after the two-phase flow reaches
a statistically steady state.

The TC system is discretised using a collocated grid system consisting of Nθ × Nr ×
Nz = 336 × 256 × 192 grids in the azimuthal, radial, and axial directions, respectively.
The grids are distributed uniformly in the azimuthal and axial directions but are unevenly
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spaced and concentrated near the two cylinders in the wall-normal direction. The grid
spacing is measured in units of the viscous length scale δν = νf /uτ for single-phase flow.
In the radial direction, the grid spacing varies from 0.34δν near the wall to 2.73δν at the
centre of the gap. In the azimuthal direction, it ranges from 2.3δν near the inner wall to
3.22δν near the outer cylinder. The grid spacing remains uniform in the axial direction,
with a value of 3.22δν . The Kolmogorov scale for single-phase flow, denoted as ηk, is
determined to be 2.11δν by employing the exact dissipation relationships given by ηk/d =
(χ−2Ta(Nuω − 1))−1/4, where Nuω = T/Tlam (Eckhardt, Grossmann & Lohse 2007) with
T representing the torque required to drive the cylinders and Tlam corresponding to the
torque when the flow is purely laminar. The maximum grid spacing is constrained to be
nearly 1.5ηk to ensure that the grid length remains comparable to the scale of the local
Kolmogorov length.

We utilise a blended scheme with the blending factor being 0.9 for the temporal
term discretisation, which lies between the first-order Euler scheme and the second-order
Crank–Nicolson scheme. The introduction of the dispersed phase could lead to numerical
instability. The blended scheme ensures a balance between numerical stability and
numerical accuracy (Greenshields 2020). For spatial discretisation, we employ a
second-order linear-upwind scheme to discretise the advection term in the momentum
equation. The PIMPLE algorithm (Holzmann 2016), which is a hybrid version of the PISO
algorithm and the SIMPLE algorithm, is used to handle the pressure–velocity coupling.
The PIMPLE algorithm guarantees better stability for problems that involve very large
timesteps and pseudo-transient simulation. The pressure equation is solved using the
geometric algebraic multigrid (GAMG) solver coupled with the simplified diagonal-based
incomplete Cholesky (DIC) method. The GAMG leverages the multigrid approach, which
utilises a hierarchy of grids with different resolutions to accelerate the convergence
process. This allows GAMG to quickly converge to a solution, reducing computational
time compared with other standard methods. In OpenFOAM, the GAMG is commonly
coupled with DIC to speed up the computational efficiency in simulating two-phase flow
(Scheufler & Roenby 2019; Chen et al. 2022). For solving velocity and phase fraction,
we use an iterative solver with a symmetric Gauss–Seidel smoother. The Gauss–Seidel
method is known for several advantages over other techniques. Its convergence speed and
memory efficiency are particularly noteworthy. In the simulation, we maintain a tolerance
of 10−6 for all variables to control the residuals, except for the phase fraction, which
has a tolerance of 10−8. The computational accuracy of these settings is examined and
validated in Appendices A and B, demonstrating that our methods can effectively simulate
single-phase and two-phase cases.

3. Results

To examine the effect of various parameters on drag modulation, we conducted a
comprehensive investigation by sequentially altering the volume fraction ϕ, viscosity ratio
ξμ and density ratio ξρ to study their individual and coupled effects, as outlined in table 1.
In this work, we fix the outer cylinder while sustaining the constant rotational velocity
of the inner cylinder. The torque T required to drive the inner cylinder is examined to
study the drag modulation caused by different types of droplets. This set-up is commonly
used to study drag modulation caused by droplets, bubbles and particles (Spandan et al.
2016; Bakhuis et al. 2018; Yi et al. 2021, 2022). Our work focuses on four typical
cases, including two-phase flows with the dispersed phase being neutral droplets (ξρ = 1
and ξμ = 1), low-viscosity droplets (ξρ = 1 and ξμ = 1/4), light droplets (ξρ = 1/4 and
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ϕ ξρ = ρd/ρf ξμ = μd/μf Drag modulation (T/Tϕ=0 − 1)

0 — — —
5 % 1 1 +7.06 %
5 % 1 1/4 +6.31 %
5 % 1/4 1 −4.97 %
5 % 1/4 1/4 −13.29 %
10 % 1 1 +9.79 %
10 % 1 1/4 +8.56 %
10 % 1/4 1 −16.28 %
10 % 1/4 1/4 −29.76 %

Table 1. Drag modulation in two-phase flow. Here T represents the torque exerted on the inner cylinder and
Tϕ=0 denotes the torque specifically associated with the single-phase flow condition.

ξμ = 1) and low-viscosity light droplets (ξρ = 1/4 and ξμ = 1/4). The torque is collected
from about 105 time steps after reaching a statistically steady state. An increase in drag
is observed for two-phase flow with neutral droplets, consistent with the experimental
observation (Yi et al. 2021). However, reducing the viscosity of the dispersed phase to
ξμ = 1/4 results in almost no change in the drag enhancement effect compared with the
case with neutral droplets. On the other hand, reducing the density of the dispersed phase
to ξρ = 1/4 leads to significant drag reduction. Moreover, simultaneously reducing the
density and the viscosity can result in stronger drag reduction. For low-viscosity light
droplets, the kinematic viscosity is the same as that of the continuous phase. Therefore,
the corresponding characteristic Reynolds number Red = ρduid/μd = 6000 is the same
as the system Reynolds number for the single-phase case. Considering the same Reynolds
number and a viscosity ratio of 1/4, a drag reduction of 75 % would be obtained when
the total volume fraction of the low-viscosity light droplets is 100 %. In our work, only
10 % low-viscosity light droplets could lead to up to 30 % drag reduction, demonstrating
the efficiency of the chosen volume fraction on drag modulation. In addition, we observe
similar trends in drag modulation for two different volume fractions of the dispersed phase,
ϕ = 5 % and ϕ = 10 %. For given density ratio ξρ and viscosity ratio ξμ, an increase in the
volume fraction ϕ leads to the pronounced amplitude of drag enhancement or reduction,
which depends on the droplet properties ([ξρ , ξμ]). We will conduct a detailed analysis of
these results to elucidate the individual and coupled effects of the viscosity and density of
the dispersed phase on the system’s drag and turbulence properties, aiming to reveal the
underlying mechanisms.

Given the similarity in drag modulation for the two volume fractions, ϕ = 5 % and
ϕ = 10 %, we focus our subsequent investigations on the 5 % volume fraction cases.
In a TC system, the spatial distribution of droplets is affected by the background flow
field and potentially by the inertial effect due to centrifugal force if there is a density
mismatch between the phases. Figure 1(a–h) displays the instantaneous interface snapshots
as well as the azimuthally and time-averaged phase fraction. The averaged radial–axial
velocity vectors denote the magnitude and structure of the Taylor vortex, which provides
information on the dispersed phase spatial distribution.

3.1. Drag modulation
For neutral droplets, the effect of centrifugal force is eliminated as the densities of
the two phases are perfectly matched. As illustrated in figure 1(e), the neutral droplets
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(i) ( j)

ξρ = 1; ξμ = 1
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(r – ri)/d (r – ri)/d (r – ri)/d
1 1

(e) (g) (h)( f )(a) (b) (c) (d )

Single-phase

Figure 1. (a–d) Instantaneous interface snapshots and (e–h) corresponding azimuthally and time-averaged
phase fraction 〈α〉θ,t. The grey arrows in (e–h) denote the direction and magnitude of the averaged radial–axial
velocity vectors 〈urz〉θ,t/ui. Here 〈α〉θ,t indicates the proportion of dispersed phase (phase distribution). To
facilitate the observation of the phase distribution, a logarithmic scale is employed for the legend labels.
(i) The normalised azimuthal velocity 〈uθ 〉/ui and ( j) the phase distribution 〈α〉 are obtained as a function
of radial position r. Inset: enlarged view of 〈uθ 〉/ui near the inner cylinder. The operator 〈·〉 denotes the average
in the axial and azimuthal directions and over time.

predominantly exhibit voids in the region where the plumes are ejected from the inner
(outer) boundary layer to the bulk. This pattern resembles that of neutrally buoyant
finite-size particles at a system Reynolds number of 6500 in the same definition as here,
which is primarily attributed to the flow structures and the finite-size effect of the particles
(Wang et al. 2022a). Although the neutral droplets have a weaker finite-size effect due
to their capacity for deformation and breakage, the spatial distribution qualitatively aligns
with that of finite-size particles. In addition, compared with the single-phase case, the
neutral droplets induce a decrease in the azimuthal velocity in the vicinity of the inner
cylinder, as illustrated in the inset of figure 1(i). Considering the fixed azimuthal velocity
of the inner cylinder, this decrease causes an increase in the azimuthal velocity gradient at
the inner cylinder, resulting in drag enhancement.

Low-viscosity droplets exhibit a distribution similar to that of the neutral droplets. This
suggests that decreasing the viscosity of the dispersed phase does not introduce new
mechanisms affecting the phase distribution, at least in the parameter regime studied. We
note that the low-viscosity droplets are distributed mainly in the bulk region where the
effect of viscosity on momentum transport is weak, which leads to a negligible effect of
viscosity reduction on the flow field. Therefore, when the droplets are neutrally buoyant,
the decrease in viscosity ratio does not lead to a significant change in the system’s drag.

For light droplets, the dispersed phase experiences two main forces within the r–z plane.
First, the centrifugal force generated by the density difference between the two phases
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causes the dispersed phase to migrate toward the inner cylinder. Second, the drag force,
resulting from any velocity difference between the dispersed phase and the continuous
phase, causes the dispersed phase to move along with the motion of the Taylor vortex.
Ultimately, the dispersed phase tends to aggregate in the region close to the inner cylinder,
where the drag and centrifugal forces are roughly balanced. Remarkably, a prominent
interfacial structure forms in the ejection region of the plumes near the inner cylinder,
and the average phase fraction 〈α〉θ,t in this region is approximately 1 (see figure 1c,g).
Consequently, there is a notable disparity in the distribution of the phase fraction near
the inner cylinder compared with other regions. In addition, an increase in the azimuthal
velocity compared with the single-phase case is observed in the vicinity of the inner
cylinder. Considering the fixed azimuthal velocity of the inner cylinder, this leads to a
decrease in the azimuthal velocity gradient at the inner cylinder, which may be due to
the density reduction lowering the effective Reynolds number. The decreased azimuthal
velocity gradient at the inner cylinder results in drag reduction.

For low-viscosity light droplets, the alteration from ξμ = 1 to ξμ = 1/4 disrupts the
balance between the drag force and the centrifugal force, leading to a modification in the
phase distribution. As depicted in figure 1(h), the interfacial structure undergoes a slight
stretching in the vertical direction, indicating a greater concentration of the dispersed phase
near the inner cylinder, as depicted in figure 1( j). This change can be attributed to the
reduced viscosity, which weakens the Taylor vortex and, in turn, makes the centrifugal
force more significant. It is important to note that, unlike light droplets, low-viscosity light
droplets reduce the azimuthal velocity in the vicinity of the inner cylinder compared with
the single-phase case, which results in a greater azimuthal velocity gradient. Therefore,
the drag reduction induced by low-viscosity light droplets is mainly attributed to their low
viscosity and little related to their modulation on the azimuthal velocity.

Based on the results discussed above, we found that neutral droplets distribute mainly
in the bulk region. The presence of neutral droplets causes a decrease in the azimuthal
velocity near the inner cylinder. This leads to an increase in the azimuthal velocity
gradient at the inner cylinder, increasing the system’s drag. Low-viscosity droplets exhibit
similar distribution behaviour to neutral droplets. As they are mainly distributed in the
bulk region where the influence of viscosity is weak, the effect of viscosity reduction
on azimuthal velocity is almost negligible. Therefore, low-viscosity droplets exhibit an
indistinguishable decrease in drag compared with neutral droplets. In the case of light
droplets, the centrifugal forces caused by density mismatch cause the light droplets to
aggregate near the inner cylinder. The presence of light droplets leads to a decrease in the
azimuthal velocity gradient at the inner cylinder probably because the light droplets lower
the local effective Reynolds number, leading to drag reduction. For low-viscosity light
droplets, a greater azimuthal velocity gradient is induced at the inner cylinder, which is in
contrast to the drag reduction caused by them. The drag reduction is mainly attributed to
the low viscosity of the droplets which causes a reduction in the viscous shear stress at the
inner cylinder. In addition, it is observed in figure 1(i) that the azimuthal velocity shows a
reduction in the bulk region for all two-phase cases compared with the single-phase case.
This phenomenon is explained in the next section.

3.2. Momentum budget analysis
To further investigate the turbulence modulation caused by different types of droplets,
a momentum budget analysis is conducted based on the conserved quantity Jω that
characterises the radial transport of azimuthal momentum in the two-phase TC turbulence
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(Su et al. 2024)
Jω = Jω

adv(r) + Jω
dif (r) + Jω

int(r), (3.1)

where the three terms on the right-hand side represent the advection contribution, the
diffusion contribution and the interfacial contribution, respectively,

Jω
adv(r) = 〈r2ρuruθ 〉, (3.2)

Jω
dif (r) = −〈μ(r3∂rω + r∂θur)〉, (3.3)

Jω
int(r) = −

∫ r

ri

〈r2fθ 〉 dr. (3.4)

Here ur is the radial velocity, ω is the angular velocity and fθ is the azimuthal component
of interfacial tension. It is well-established that the conserved quantity Jω and the torque
at the inner cylinder T in the TC system are related through the equation T = 2πLJω.
The advection contribution, the diffusion contribution and the interfacial contribution
are explicitly related to density, viscosity and interfacial tension, respectively, offering
a convenient way to effectively decouple the effects of density, viscosity and two-phase
interface on drag modulation.

For the two-phase flow with neutral droplets (ξρ = 1 and ξμ = 1), the advection
contribution in the bulk region is modulated to account for the influence of the two-phase
interface. Specifically, the advection contribution increases in the half of the bulk region
closer to the inner cylinder, while decreasing in the other half of the bulk region (see
figure 2a). In addition, the presence of the two-phase interface introduces the interfacial
contribution, which consistently exhibits a positive value along the radial position,
indicating its contribution to drag enhancement (see figure 2c). Due to the lack of
significant modulation in the radial-averaged advection and diffusion contributions, the
increase in drag is primarily attributed to the interfacial contribution (see figure 2d).

In contrast to other scenarios involving drag modulation (e.g. the drag enhancement
caused by finite-size particles in turbulent channel flow and turbulent plane Couette flow,
where the particle-induced stress has zero contributions at the wall; Picano, Breugem &
Brandt 2015; Wang, Abbas & Climent 2017), the interfacial contribution in our cases
exhibits a zero value at the inner cylinder and a non-zero value at the outer cylinder (see
figure 2c). Note that the interfacial contribution is obtained by integrating the contribution
from the azimuthal component of interfacial tension within each cylindrical plane from
the inner cylinder to the specific position. Namely, the interfacial contribution at a specific
radial position relies on the interfacial tension in the region between the cylindrical plane
and the inner cylinder, not just the interfacial tension within the cylindrical plane.

It is found that the interfacial contribution shows an obvious increase with the radial
position near the inner cylinder, while there is an obvious decrease with the radial
position near the outer cylinder for the two-phase flow with neutral droplets. Based on
the distribution characteristics of the interfacial contribution and Jω

int(r) = − ∫ r
ri
〈r2fθ 〉 dr,

we propose a model to explain the effect of interfacial tension in shear turbulence. In
this model, when the azimuthal velocity of the droplet phase is less than that of the
surrounding continuous phase within a cylindrical plane, the droplet phase is subject to
a drag force exerted by the surrounding continuous phase. The drag would be balanced by
the interfacial tension 〈 fθ 〉, which takes a negative value and opposes the direction of the
flow. Conversely, when the azimuthal velocity of the droplet phase is larger than that of the
surrounding continuous phase, 〈 fθ 〉 takes a positive value and shares the same direction of
the flow. In the vicinity of the inner cylinder, 〈 fθ 〉 takes a negative value and results in an
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Figure 2. Momentum budget analysis: (a) the advection contribution, (b) the diffusion contribution and
(c) the interfacial contribution as a function of the radial position. (d) The three contributions are averaged
in the radial direction to characterise the corresponding terms within the whole system and are shown in the
stack column. The dashed line in (d) represents the averaged advection contribution for single-phase flow. All
the quantities are normalised by the conserved quantity for single-phase flow. The insets in (b) show enlarged
views of the diffusion contribution near the inner and outer cylinders.

obvious increase of interfacial contribution with the radial position. The interfacial tension
opposes the direction of the flow and tends to reduce the azimuthal velocity as shown in the
inset of figure 1(i), thus leading to drag enhancement. Near the outer cylinder, 〈 fθ 〉 takes a
positive value and results in an obvious decrease of interfacial contribution with the radial
position, i.e. the interfacial tension tends to increase the azimuthal velocity there. The
interfacial contribution can be regarded as the overall effect of interfacial tension in the
region between a specific cylindrical plane and the inner cylinder. The positive interfacial
contribution at the outer cylinder indicates that the overall effect of interfacial tension
within the gap tends to reduce the azimuthal velocity. As there is a positive interfacial
contribution at the outer cylinder for all two-phase cases, azimuthal velocity shows a
reduction in the bulk region for all two-phase cases compared with the single-phase case
as shown in figure 1(i).

For the two-phase flow with low-viscosity droplets (ξρ = 1 and ξμ = 1/4), the three
contributions are very close to those of neutral droplets since droplets mainly exist in the
bulk region where the viscosity has a very weak influence on the momentum transport.
Upon closer examination, it is still possible to glean some insights into the effects of
viscosity. In comparison with neutral droplets, a minor increase in the radial-averaged
advection contribution is observed, as depicted in figure 2(d). This could be attributed
to the reduction in viscosity within the bulk region, leading to a diminished inhibitory
effect of viscosity on turbulence within this region. In addition, we observed that the
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radial-averaged diffusion contribution does not decrease despite the reduction in viscosity
in the bulk region. This is because the decrease in droplet viscosity leads to an enhanced
velocity gradient across the two-phase interface (Farsoiya et al. 2023), which potentially
contributes to the diffusion term (through ∂rω and ∂θur). Moreover, reducing viscosity
also decreases the interfacial contribution in the bulk region. We speculate that this is due
to the viscosity reduction weakening the interface’s ability to impede the surrounding flow
field.

For the two-phase flow with light droplets (ξρ = 1/4 and ξμ = 1), the advection
contribution undergoes a significant reduction. The density ratio ξρ = 1/4 promotes the
aggregation of the dispersed phase near the inner cylinder, resulting in a substantial
decrease in the upstream advection contribution due to its density-related nature.
Moreover, in regions away from the inner cylinder where the dispersed phase’s volume
fraction is low, the significant reduction in the advection contribution can be attributed to
a decrease in uruθ since the density remains relatively constant. We here emphasise that
the decrease in the advection contribution caused by ξρ = 1/4 surpasses the interfacial
contribution, leading to drag reduction.

For the two-phase flow with low-viscosity light droplets (ξρ = 1/4 and ξμ = 1/4), the
diffusion contribution is diminished near the inner cylinder due to its viscosity-related
nature. As discussed earlier regarding the azimuthal velocity, we have shown that the drag
reduction is mainly due to the low viscosity of the droplets. The advection contribution
will be implicitly reduced through the velocity field (i.e. uruθ ) to maintain the conserved
quantity constant along the radial position.

These results demonstrate that decreased viscosity alone does not significantly affect
momentum transport, whereas the decreased viscosity in combination with decreased
density can reduce momentum transport significantly and, hence, lead to drag reduction.

3.3. Turbulent fluctuation analysis
The momentum budget analysis mainly focuses on the effects of interfacial tension and the
fluid properties of the dispersed phase on global transport. However, while it sheds light on
these aspects, the details of how the dispersed phase influences turbulence remain elusive.
Therefore, it becomes crucial to delve deeper into statistics of turbulence properties. Due
to the density difference between the dispersed and continuous phases, the Reynolds
average is no longer the best choice for obtaining the Reynolds stress. Consequently, we
adopt the Favre-average method (Favre 1969), which applies a density-weighted average
to the velocity. The Favre-averaged Navier–Stokes equations are formally similar to the
Reynolds-averaged equations for the single-phase case and are easily compared across
cases. This advantage makes the Favre average widely used in the study of compressible
and multiphase flows. The Favre average applies a density-weighted average to the velocity
field, resulting in fluctuations in the velocity vector,

u′′ = u − ũ, (3.5)

where ũ = 〈ρu〉/ρ̄ is the Favre-averaged velocity vector and ρ̄ = 〈ρ〉. On the other hand,
the fluctuation in the velocity vector using the Reynolds average is given as

u′ = u − 〈u〉. (3.6)

The velocity fluctuation due to the Favre average and the Reynolds average are related with

u′′ = u′ − a, (3.7)
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where a = 〈ρ′u′〉/〈ρ〉 is a function of radial position, characterising the overall effect of
density fluctuations within each cylindrical plane. When the dispersed and continuous
phases possess identical densities, the Favre average simplifies to the Reynolds average.

To explore the effect of the dispersed phase on the background turbulence, we show
the Favre-average Reynolds stress 〈ρu′′

r u′′
θ 〉 as well as the radial component 〈ρu′′

r u′′
r 〉,

the azimuthal component 〈ρu′′
θu′′

θ 〉 and the axial component 〈ρu′′
z u′′

z 〉 of the TKE
k = 0.5〈ρu′′

r u′′
r + ρu′′

θu′′
θ + ρu′′

z u′′
z 〉 as depicted in figure 3. The Favre-average Reynolds

stress (hereafter referred to as Reynolds stress) 〈ρu′′
r u′′

θ 〉 shows a similar profile to the
advection contribution 〈r2ρuruθ 〉 in the momentum transport due to

〈r2ρuruθ 〉 = r2ρ̄ũrũθ + r2〈ρu′′
r u′′

θ 〉, (3.8)

where r2ρ̄ũrũθ is the contribution from mean flow and r2〈ρu′′
r u′′

θ 〉 is the contribution from
turbulent flow. The contribution from the mean flow is nearly negligible, with its maximum
value being less than 1 % of the turbulence contribution (see the inset in figure 3a). This
suggests that the mean flow has minimal influence on the advection term in momentum
transport. Since r serves solely as a positional parameter, the advection term in momentum
transport is determined completely by the Reynolds stress. Therefore, we can reinterpret
momentum transport from the perspective of turbulence.

Neutral droplets lead to an increase in Reynolds stress in the majority of the bulk region
closer to the inner cylinder, whereas it decreases in the other half of the bulk region,
thus accommodating the influence of the two-phase interface. However, the total Reynolds
stress changes very little, and the drag enhancement is mainly due to the interfacial
contribution. For low-viscosity droplets, their lower viscosity weakens the inhibitory effect
of the bulk region on turbulence compared with the continuous phase. However, the overall
modulation of Reynolds stress is minimal in comparison with neutral droplets. Thus, the
interfacial contribution remains the key factor in determining the drag enhancement. In
the case of light droplets, the aggregation of the light droplets near the inner cylinder
results in a notable decrease in the upstream Reynolds stress (through ρ), primarily due
to their density-related characteristics. Furthermore, the downstream Reynolds stress is
correspondingly reduced (through u′′

r u′′
θ ) to ensure momentum conservation along the

radial position, ultimately leading to drag reduction. For low-viscosity light droplets, the
alteration from ξμ = 1 to ξμ = 1/4 further reduces the momentum transport near the
wall by decreasing the diffusion term (which is explicitly related to viscosity), thereby
once again implicitly reducing the Reynolds stress in the bulk region (through u′′

r u′′
θ ) and

causing a stronger drag reduction. In the studied parameter regime, neutral droplets and
low-viscosity droplets increase the system’s drag due to the interfacial contribution, while
light droplets and low-viscosity light droplets induce drag reduction by decreasing the
Reynolds stress.

For the three components of TKE, we observe an overall decrease due to the presence of
neutral droplets, indicating that the presence of the two-phase interface weakens the total
turbulence intensity. Considering that Reynolds stress did not decrease significantly, it is
likely that the presence of the two-phase interface leads to a transformation of turbulence
or changes in the energy dissipation process within the system. Recent studies (Perlekar
et al. 2014; Crialesi-Esposito et al. 2022) have demonstrated that the two-phase interface
results in a decrease in energy for large-scale vortices and an increase in energy for
small-scale vortices, suggesting an alteration in the energy cascade process. This alteration
in the energy cascade process is likely responsible for the reduction observed in the
three components of TKE, as the significant decrease in the total energy of large-scale
vortices outweighs the increase in the total energy of small-scale vortices within the
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Figure 3. The modulation on the turbulence properties. (a) The Favre-averaged Reynolds stress
〈ρu′′

r u′′
θ 〉/τi,ϕ=0, (b) the radial (wall-normal) component of the TKE 〈ρu′′

r u′′
r 〉/τi,ϕ=0, (c) the azimuthal

(streamwise) component of the TKE 〈ρu′′
θ u′′

θ 〉/τi,ϕ=0 and (d) the axial (spanwise) component of the TKE
〈ρu′′

z u′′
z 〉/τi,ϕ=0 are shown as a function of the radial position, where τi,ϕ=0 is the total shear stress on the inner

cylinder in single-phase flow. The inset in (a) shows the Favre-averaged term of the mean flow ρ̄ũrũθ /τi,ϕ=0.
The maximum value of the ordinate of the inset is set as 0.01, while the maximum value of the ordinate of (a)
is set as 1.

system. Furthermore, the slight increase in the three components of TKE for low-viscosity
droplets compared with neutral droplets provides additional support for this conjecture.
The slight increase indicates that reducing the viscosity of droplets weakens the reduction
scale of TKE (or the alteration in the energy cascade process), aligning with the findings
from Crialesi-Esposito et al. (2022). From an alternative standpoint, the slight increase
in the three components of TKE compared with neutral droplets can be attributed to the
weakened inhibitory effect on turbulence caused by the decreased viscosity in the bulk
region.

Light droplets cause a significant reduction in the three components of the TKE due to
their explicit density dependence. Near the inner cylinder, this reduction primarily arises
from the decreased density, whereas in the remaining region, it stems from the reduction
in velocity fluctuations. In addition, it is observed that low-viscosity light droplets result
in a further reduction in the TKE components. This can be attributed to the fact that the
low-viscosity droplets weaken momentum transport near the inner cylinder, subsequently
causing a decrease in the energy available for transfer from the boundary layer to the bulk
region.
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Based on the analysis of turbulent fluctuations, we establish a connection between
turbulence and the system’s drag through Reynolds stress. This approach provides more
detailed insights into the effect of the two-phase interface, dispersed phase viscosity
and dispersed phase density on turbulence and the system’s drag. In the case of
two-phase flow with neutral droplets, the drag enhancement is primarily governed by
the interfacial contribution. To maintain momentum transport conservation (a constant
conserved quantity), the Reynolds stress is adjusted to match the presence of the two-phase
interface, but the overall change is not significant. Conversely, low-viscosity droplets
will cause a slight increase in Reynolds stress within the bulk region since their low
viscosity weakens the suppression of turbulence. However, the overall effect on the drag
is not significant compared with the neutral droplets, and the interfacial contribution still
dominates the drag enhancement. On the other hand, in the case of light droplets, their low
density causes them to aggregate near the inner cylinder, resulting in a significant reduction
of Reynolds stress in this region due to the explicit density dependence of Reynolds stress.
The Reynolds stress in other regions decreases accordingly to ensure momentum transport
conservation, ultimately leading to drag reduction. When the low viscosity is introduced
into light droplets, a more pronounced reduction in momentum transport occurs as the
droplets predominantly aggregate near the inner cylinder, where viscosity plays a dominant
role in momentum transport. Consequently, this leads to greater drag reduction.

To summarise, neutral droplets and low-viscosity droplets primarily contribute to drag
enhancement through the interfacial contribution, while light droplets reduce the system’s
drag by reducing Reynolds stress. Furthermore, low-viscosity light droplets contribute to
drag reduction mainly by reducing the diffusion contribution and Reynolds stress. It is
important to note that viscosity plays different roles in different regions. Low viscosity
near the wall results in a reduction in downstream Reynolds stress by decreasing upstream
momentum transport, whereas low viscosity in the bulk region may lead to an increase in
Reynolds stress.

3.4. TKE budget analysis
Considering the potential alterations in turbulence characteristics resulting from the
introduction of a two-phase interface or changes in droplet fluid properties, it is not
advisable to directly correlate the TKE with system’s drag. System’s drag imparts kinetic
energy to the system, but a substantial fraction of this energy dissipates through turbulent
mechanisms. Hence, examining the dissipation rate of TKE provides a valuable means
to establish a significant linkage between system’s drag and turbulence properties. The
transport equation of the TKE can be written in the form (Besnard et al. 1992; Wong et al.
2022)

0 = 〈ρu′′u′′〉 : (∇ũ)︸ ︷︷ ︸
P

−∇ · 〈p′u′〉︸ ︷︷ ︸
PD

−∇ · 〈ρu′′u′′ · u′′〉/2︸ ︷︷ ︸
T

+∇ · 〈τ ′ · u′〉︸ ︷︷ ︸
D

−〈τ ′ : ∇u′〉︸ ︷︷ ︸
ε

+ 〈u′ · f ′〉︸ ︷︷ ︸
I

+ a · (∇〈p〉 − ∇ · 〈τ 〉)︸ ︷︷ ︸
M

, (3.9)

where p′ = p − 〈p〉, τ ′ = τ − 〈τ 〉 and f ′ = f − 〈 f 〉. Here P is the production term, PD
the pressure diffusion, T the turbulence transport, D the viscous diffusion, ε the dissipation
term, I interface term and M the additional production term due to the density difference
between the dispersed and continuous phases. Figure 4 shows the distribution of each term
in the TKE transport equation as a function of radial position. The energy transfer rate
between the mean kinetic energy and the TKE, P, is consistently positive in our cases. It is
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Figure 4. TKE budget. Each term on the right-hand side of (3.9) is shown for (a) single-phase flow,
(b) two-phase flow with neutral droplets and (c) two-phase flow with low-viscosity light droplets. (d) The
quantities are averaged in the radial direction to characterise the corresponding terms within the whole system.
All the quantities are normalised by the |εϕ=0,i|, where εϕ=0,i denotes the dissipation rate at the inner cylinder
for single-phase flow and the operator |·| gets the absolute value of the quantity.

mainly determined by Reynolds stress and azimuthal velocity gradient, i.e. 〈ρur
′′u′′

θ 〉∂rũθ .
We use ε to represent the dissipation rate of TKE and is always a negative value. This
value is directly related to the torque required to sustain the constant rotational velocity
of the inner cylinder. Note that the positive and negative values represent the gain and the
loss in TKE, respectively. The pressure diffusion PD, turbulence transport T and viscous
diffusion D often indicate the interchange or redistribution of the TKE. The balance term
reflects any imbalance due to numerical effects and it is negligibly small.

For the two-phase flow with droplets, the presence of the two-phase interface introduces
an interface term I (see figure 4b). By decreasing the dispersed phase density, an additional
production term M is observed mainly near the inner cylinder (see figure 4c). By
comparing with the single-phase case, we find that the pressure diffusion PD, turbulence
transport T and viscous diffusion D are all reduced in two-phase cases, indicating that the
presence of dispersed droplets weakens the interchange or redistribution of the TKE.

To assess the overall effect of each term in (3.9) on the TKE transport, an analysis was
conducted by globally averaging these terms, as illustrated in figure 4(d). The findings
indicate that TKE is mainly input into the system through the production term (P) and
dissipated through the dissipation term (ε). On the other hand, the effects of the pressure

999 A98-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

94
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.943


Turbulence modulation in liquid–liquid two-phase TC flow

1.0

0.5

–0.5

–1.0

–1.5

–2.0

1.0 2.0

1.5

1.0

0.5

–0.5

0

0.5

–0.5

0

0

1.0

0.5

–0.5

–1.0

–1.5

–2.0

–2.5

0

0 0.5 1.0 0 0.5 1.0

0 0.5 1.0 0 0.5 1.0

(r – ri)/d (r – ri)/d

|ε|
–
 |ε

ϕ
=

0
|

P 
–
 P

ϕ
=

0

MI

(a) (b)

(c) (d)

Single-phase
ξρ = 1; ξμ = 1

ξρ = 1; ξμ = 1/4

ξρ = 1/4; ξμ = 1

ξρ = 1/4; ξμ = 1/4

Figure 5. (a) The production difference, (b) the dissipation difference, (c) the interface term and (d) the
additional production term due to density difference between phases are shown as a function of radial position.
All the quantities are normalised by the radial-averaged |εϕ=0| to illustrate their magnitudes. Here Pϕ=0 and
εϕ=0 denote the production term and dissipation term for the single-phase flow, respectively.

diffusion term (PD), turbulence transport term (T) and viscous diffusion term (D) are
nearly negligible. In addition, the interface term (I) and the additional production term
(M), which are specific to two-phase flow, exhibit a small positive value, indicating that
the two-phase interface and the density difference between the phases enhance the TKE
transport. Consequently, the focus is on examining the modulation of the production term
(P), dissipation term (ε), interface term (I) and additional production term (M) with respect
to their counterparts in single-phase flow, as depicted in figure 5.

As shown in figure 4, the dissipation term is negative and indicates a loss of TKE. To
facilitate observation and analysis, the absolute value of the dissipation term |ε| is adopted
to characterise the magnitude of dissipation. The production difference (P − Pϕ=0),
dissipation difference (|ε| − |εϕ=0|), interface term (I) and additional production term
(M) are used to examine the effect of droplets on TKE transport, as depicted in figure 5.
A positive value indicates an enhancement effect on TKE transport, while a negative
value suggests a weakening effect. The interface term (I), specific to two-phase flow,
is essentially positive, signifying its role in enhancing TKE transport. Moreover, for
light droplets and low-viscosity light droplets, the additional production term (M) is
predominantly positive near the inner cylinder, whereas it is close to zero in other regions.
This term primarily arises from the interfacial structure adsorbed on the inner cylinder and
contributes to the enhanced transport of TKE across the interface.

For the two-phase flow with neutral droplets (ξρ = 1 and ξμ = 1), we observe net
positive value in turbulence production near the inner cylinder, whereas net negative values
are observed in the rest of the domain. This indicates that the production term is enhanced
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Figure 6. (a) TKE budget analysis. The quantities are averaged in the radial direction to characterise the
corresponding terms within the whole system. ‘Other’ denotes (PD + T + D) − [PD + T + D]ϕ=0, where
[PD + T + D]ϕ=0 denotes the sum of PD, T and D for single-phase flow. (b) The dissipation difference
|ε| − |εϕ=0| is integrated within each cylindrical plane from the inner cylinder to a specific radial position.
All the quantities are normalised by the radial-averaged |εϕ=0| to illustrate their magnitudes.

near the inner cylinder, while the production term is weakened outside this region. The
dissipation difference shows a negative value in the region closest to the inner and outer
cylinders and a positive value outside the closest region. Correspondingly, the interface
term primarily leads to an increase in TKE transport near the inner and outer cylinders.
The locations where the dissipation difference is positive are approximately close to the
regions where the interface term is positive, indicating that the interfacial tension enhances
the dissipation near the cylinders. However, as depicted in figure 6(a), when considering
the global perspective, although the two-phase interface contributes to the TKE transport
through the interfacial tension, it also results in a decrease in the production term. This
ultimately leads to a slight reduction in the dissipation term, indicating a decrease in the
amount of power required to sustain turbulence. Therefore, the drag enhancement induced
by the neutral droplets weakly depends on the TKE transport. Furthermore, the moderating
effect of low-viscosity droplets on TKE transport is similar to that of neutral droplets. This
similarity suggests that the drag enhancement caused by low-viscosity droplets is also
weakly dependent on the TKE transport.

In the case of two-phase flow with light droplets (ξρ = 1/4 and ξμ = 1), the presence
of these droplets weakens turbulence production throughout the entire domain. This
weakening is attributed to the reduced Reynolds stress, which leads to a significant
reduction in the total turbulence production, as depicted in figures 5(a) and 6(a). From a
global perspective, there is a negligible modulation effect on the sum of pressure diffusion,
turbulence transport and viscous diffusion. By isolating the effects of the interface term
and the additional production term resulting from density differences, it is observed that a
total of 10.4 % of the turbulence dissipation is reduced. This reduction indicates that the
power required to sustain turbulence in the system has decreased by this amount, ultimately
resulting in a drag reduction. It is worth noting that the reduction in the total dissipation
rate is primarily due to the decrease in the dissipation rate near the outer cylinder, as
shown in figures 5(b) and 6(b). This is because the density contrast between the phases
boosts TKE transport near the inner cylinder, thus weakening the reduction in the total
dissipation rate there.

In the case of two-phase flow with low-viscosity light droplets (ξρ = 1/4 and ξμ = 1/4),
a more pronounced reduction in the dissipation rate is observed. Specifically, a total of
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17.7 % of the power required to sustain turbulence in the system has been decreased. The
transition from light droplets to low-viscosity light droplets leads to a further decrease in
the Reynolds stress, resulting in a more significant weakening of turbulence production.
Moreover, the reduction in droplet viscosity diminishes the effect of the additional
production term while having minimal effects on the other terms. As a result, a larger
reduction in the turbulent dissipation rate is achieved, leading to a more substantial drag
reduction.

Based on the aforementioned analyses, it is evident that two-phase flow introduces
an interface term and an additional production term arising from the density difference
between the two phases. While the interfacial tension essentially enhances the TKE
transport, the drag enhancement is not strongly correlated with TKE transport. This
mechanism holds for both neutral droplets and low-viscosity droplets, as observed in our
examination. Light droplets, on the other hand, cause a reduction in the production term
mainly by reducing the Reynolds stress. However, both the density difference between the
two phases and the interface between the two phases lead to an increase in TKE transport.
Consequently, the reduction in the turbulent dissipation rate is mainly attributed to the
decrease in the turbulence production term, which in turn causes drag reduction. The
production term is further reduced in the case of low-viscosity light droplets due to their
greater reduction in Reynolds stress. In addition, the reduction in viscosity weakens the
additional production term. As a result, a greater drag reduction is achieved.

4. Conclusions

In this study, we have examined how the dispersed phase influences system’s drag and
turbulence properties in a two-phase fluid–fluid TC system operating at a system Reynolds
number of 6 × 103 and a system Weber number of 10. To achieve this, we employ the
interface-resolved VOF method, which enables the resolution of two-phase flows through
a single-equation formulation. This approach allows us to conduct operations similar to
single-phase flow and facilitates the exploration of how the dispersed phase influences the
statistical properties of turbulence.

Through our analysis of momentum transport and turbulent fluctuations, we establish
a connection between turbulence statistics and the system’s drag using Reynolds stress.
This provides detailed insights into the effect of the two-phase interface, dispersed phase
viscosity and dispersed phase density on turbulence and the system’s drag. In the case
of two-phase flow with neutral droplets, drag enhancement is primarily governed by the
interfacial contribution. The Reynolds stress is modulated to account for the influence of
the two-phase interface, but the overall change is not significant. Lowering the droplets’
viscosity will cause a slight increase in Reynolds stress, as their low viscosity weakens the
suppression of turbulence within the bulk region. However, the overall effect on drag is not
significant compared with neutral droplets, and the interfacial contribution still dominates
drag enhancement. On the other hand, in the case of light droplets, their low density
causes them to aggregate near the inner cylinder, resulting in a significant reduction in
Reynolds stress in this region due to the explicit density dependence of Reynolds stress.
The Reynolds stress in other regions decreases accordingly to ensure momentum transport
conservation, ultimately leading to drag reduction. When low viscosity is introduced into
light droplets, a more pronounced reduction in Reynolds stress occurs, as the droplets
predominantly aggregate near the inner cylinder, where viscosity plays a dominant role
in momentum transport. Consequently, this leads to greater drag reduction. In summary,
neutral droplets and low-viscosity droplets primarily contribute to drag enhancement
through the interfacial contribution, while light droplets reduce the system’s drag by
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explicitly reducing Reynolds stress. Furthermore, low-viscosity light droplets contribute
to drag reduction by explicitly and implicitly reducing Reynolds stress.

Furthermore, we have investigated the effect of the dispersed phase on the transport of
TKE. In two-phase flow, an interface term arises due to interfacial tension, potentially
accompanied by an additional production term resulting from the density difference
between the two phases. While interfacial tension primarily enhances TKE transport, the
correlation between drag enhancement and TKE transport is not strong, as the two-phase
interface also weakens turbulence production. This holds true for both neutral droplets
and low-viscosity droplets. On the other hand, light droplets reduce the production term
primarily by lowering Reynolds stress. However, the density contrast between the two
phases enhances TKE transport near the inner wall. Consequently, the reduction in the
turbulence dissipation mainly stems from the decrease in the production term, leading to
drag reduction. In the case of low-viscosity light droplets, the production term is further
reduced due to a greater decrease in Reynolds stress. In addition, the decrease in viscosity
weakens the additional production term. This results in a more significant reduction in the
turbulence dissipation, leading to stronger drag reduction.

From the perspective of turbulence, we find that the Reynolds stress plays a key
role in drag modulation. It participates in momentum transport in the form of an
advection contribution and participates in TKE transport as an important component of the
turbulence production term. From a drag reduction perspective, we emphasise the critical
role that density ratio plays in this process. By reducing the density of the dispersed phase,
the aggregation of the dispersed phase near the inner cylinder is promoted, which amplifies
the influence of lower density on Reynolds stress, thereby causing significant drag
reduction at a very small volume fraction of the dispersed phase. Furthermore, it enables
greater drag reduction by promoting the transportation of low-viscosity droplets towards
the near-wall region where viscosity plays a dominant role in momentum transport.

Funding. This work is financially supported by the National Natural Science Foundation of China under grant
numbers 11988102, 22478421, 12402299 and 12402298, the New Cornerstone Science Foundation through
the New Cornerstone Investigator Program and the XPLORER PRIZE and the Science Foundation of China
University of Petroleum, Beijing (grant number 2462024YJRC008).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Jinghong Su https://orcid.org/0000-0003-1104-6015;
Cheng Wang https://orcid.org/0000-0002-6470-7289;
Yi-Bao Zhang https://orcid.org/0000-0002-4819-0558;
Fan Xu https://orcid.org/0009-0004-3324-7859;
Junwu Wang https://orcid.org/0000-0003-3988-1477;
Chao Sun https://orcid.org/0000-0002-0930-6343.

Appendix A. Conservation of momentum transport

In TC flow, Jω should be constant in the radial direction, but numerically it does show
some dependence on the radial direction. Because of numerical errors, Jω will deviate
slightly from being constant. To quantify this difference, Zhu et al. (2016) defined

ΔJ = max(Jω(r)) − min(Jω(r))
〈Jω(r)〉r

, (A1)

where the operator 〈·〉r denotes average in the radial direction. As illustrated by Ostilla
et al. (2013) and Zhu et al. (2016), ΔJ ≤ 1 % is the very strict requirement for the
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ϕ Re ξρ = ρd/ρf ξμ = μd/μf ΔJ × 100 %

0 4389 — — 0.33 %
0 5067 — — 0.68 %
0 6000 — — 0.64 %
5 % 6000 1 1 0.71 %
5 % 6000 1 1/4 0.73 %
5 % 6000 1/4 1 1.08 %
5 % 6000 1/4 1/4 1.26 %
10 % 6000 1 1 0.66 %
10 % 6000 1 1/4 0.87 %
10 % 6000 1/4 1 1.05 %
10 % 6000 1/4 1/4 1.32 %

Table 2. Radial deviation of the Jω.

Re Ta nsym Γ Nθ × Nr × Nz Nuω Deviation

Ostilla et al. (2013) 5600 4.77 × 107 1 2π 800 × 400 × 400 8.78178 —
Our simulation 5600 4.77 × 107 6 2π/3 200 × 256 × 192 8.67926 −1.18 %

Table 3. Validation of the calculation results for the single-phase flow at Re = 5600.

single-phase case. We make sure that the single-phase case meets this criterion. For the
two-phase cases, due to the additional errors introduced by the two-phase interface and the
disparities in liquid properties between the two phases, ΔJ will be slightly larger than 1 %
for the two-phase flow as listed in table 2.

Appendix B. Data validation and resolution test

To validate the accuracy of our simulations, we have simulated two cases with the Taylor
number being 3.90 × 106 (Re = 1600) and 9.52 × 106 (Re = 2500) and validated our
results through comparisons with those from Ostilla et al. (2013) in our previous work
(Su et al. 2024). Because the Re = 6000 studied in this work is not included in the work
of Ostilla et al. (2013), we additionally simulate a single-phase case at Re = 5600 and
compare the dimensionless conserved quantity Nuω = Jω/Jω

lam with that from Ostilla et al.
(2013), where Jω

lam corresponding to the case when the flow is fully laminar. In our work,
the minimum flow geometry with a rotational symmetry of six (nsym = 6, i.e. the azimuthal
angle of the simulated domain is π/3) and an aspect ratio of Γ = L/d = 2π/3 is selected
to reduce the computational cost while not affecting the results, which has been verified by
previous studies (Brauckmann & Eckhardt 2013; Ostilla-Mónico, Verzicco & Lohse 2015).
We represent the Nuω from Ostilla et al. (2013) and OpenFOAM as Nuω,Ot and Nuω,Op,
respectively, as presented in table 3. The deviation is obtained by (Nuω,Op/Nuω,Ot) − 1.
A deviation of −1.18 % is found, indicating that our simulation is sufficient to capture the
flow field information.

To obtain reliable numerical results, the grid’s spatial resolutions have to be sufficient.
The resolution test is conducted for the single-phase flow and the two-phase flow with 5 %
low-viscosity light droplets. A roughly resolved case (Nθ × Nr × Nz = 224 × 160 × 144)
with the maximum grid spacing being about 2.02ηk, a reasonably resolved case (Nθ ×
Nr × Nz = 336 × 256 × 192) with the maximum grid spacing being about 1.5ηk and a
well-resolved case (Nθ × Nr × Nz = 448 × 320 × 288) with the maximum grid spacing
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Figure 7. Radial dependence of Nuω for three different grid resolutions. An error bar indicating a 1 % error is
provided for the single-phase case and an error bar indicating a 2 % error is provided for the two-phase flow
with low-viscosity light droplets for reference.

Grid Re η Γ nsym Nθ × Nr × Nz �r+ ri�θ+ �z+

Chouippe et al. (2014) 5000 0.72 2.09 1 400 × 100 × 200 0.65 ∼ 4.48 10 2.66
Grid1 6000 0.714 2π/3 6 224 × 160 × 144 0.55 ∼ 4.38 3.46 4.31
Grid2 6000 0.714 2π/3 6 336 × 256 × 192 0.34 ∼ 2.74 2.31 3.23
Grid3 6000 0.714 2π/3 6 448 × 320 × 288 0.27 ∼ 2.19 1.73 2.15

Table 4. Grid resolutions. The grid spacing is shown in units of the viscous length scale δv for single-phase
case.

being about 1.01ηk are considered for resolution test as depicted in figure 7. For the grid
with 448 × 320 × 288, most of the grid spacing is less than ηk. We have listed the three
types of grid resolution in table 4 and compared them with the grid used by Chouippe
et al. (2014) to investigate the bubble dispersion in turbulent TC flow at Re = 5000. All
three grid resolutions have a finer grid spacing in the radial and azimuthal directions
than those used by Chouippe et al. (2014). For the grid spacing in the axial direction,
the two finer grid resolutions used in this work have a similar scale to the grid used by
Chouippe et al. (2014). It is observed that the grid with 224 × 160 × 144 can roughly
resolve the single-phase case (see figure 7). For the two-phase case with 5 % low-viscosity
light droplets, the grid with 224 × 160 × 144 shows a distinguishable difference of Nuω

compared with the two finer grid resolutions. For the two finer grids, both the Nuω lie
within 1 % error bar for the single-phase cases. Because the two-phase interface as well
as the disparities in liquid properties between the two phases could introduce additional
numerical errors, we provide an error bar of 2 % as a reference. Here, ΔJ = 1.26 % for
336 × 256 × 192 and ΔJ = 1.35 % for 448 × 320 × 288. In addition, there is a deviation
of 0.67 % for 〈Jω(r)〉r when comparing the results from the two finer grids. Therefore,
the adopted spatial resolution Nθ × Nr × Nz = 336 × 256 × 192 is sufficient to obtain
reliable results for both single-phase and two-phase cases studied.

The resolution sensitivity of the statistics discussed in this work is also conducted for
the two-phase case with 5 % low-viscosity light droplets. Considering that the distribution
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Figure 8. Radial dependence of (a) phase fraction distribution, (b) Favre-averaged Reynolds stress, (c) three
components of the TKE and (d) production and dissipation terms of the TKE transport for three different grid
resolutions for the 5 % low-viscosity light droplets case. The terms in (d) are normalised by the |εϕ=0,i|.

of the phase fraction may be dependent on the grid resolution, the distribution of phase
fraction for three different grid resolutions is shown in figure 8(a). In addition, given
that turbulent statistics are higher-order and more challenging to get converged results
compared with the lower-order results such as mean velocity profiles, we additionally show
Favre-averaged Reynolds stress, three components of the TKE as well as production term
and dissipation term of the TKE transport for three different grid resolutions as depicted in
figure 8(b–d). All results are nearly identical for the two finer grid resolutions, indicating
that the statistics discussed in this work are qualitatively converged. It is observed that the
production term and dissipation term of the TKE transport are visually nearly identical for
all three grid resolutions, which is due to the large difference between the maximum and
minimum values in the plot.

To show the effect of the two finer grid resolutions in more detail, we plot the relative
differences as a function of the radial position (see figure 9). The relative differences are
calculated by Q1/Q2 − 1, where Q1 represents the quantity for the grid with 336 × 256 ×
192 and Q2 represents the quantity for the grid with 448 × 320 × 288. It is observed that
near the two cylinders, the magnitude of relative difference could be larger than 10 %
when the quantity Q2 is close to zero. This is acceptable considering that the absolute
difference would be very small. In the bulk region, the magnitude of the relative difference
for the Reynolds stress is within 2 %, which has a similar scale as that of the conserved
quantity since the conserved quantity in the bulk region is primarily determined by the
Reynolds stress. For the three components of TKE, the magnitude of relative differences is
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Figure 9. (a) Relative difference of Reynolds stress and three components of TKE for the two finer grid
resolutions. (b) Relative difference of the production and dissipation terms of the TKE transport for the two
finer grid resolutions.

within 5 % in the bulk region. Because the production and dissipation terms are high-order
quantities, the magnitude of relative difference could be up to nearly 10 % in the bulk
region. Since the magnitude of P and ε in the bulk region are much smaller than those near
the inner cylinder, the relative difference is difficult to distinguish visually in figure 8(d). In
two-phase flow simulations, the relative differences in figure 9 are acceptable for judging
that the grid with 336 × 256 × 192 is sufficient to provide reliable turbulent statistics.

Appendix C. Mean streamwise velocity profiles

In figure 10, we plot the mean azimuthal velocity profiles normalised by the
frictional velocity, u+ = (ui − 〈uθ 〉)/uτ , vs the wall distance y+ = (r − ri)/δv . Given the
differences in fluid properties in the cases with light droplets and low-viscosity light
droplets and uneven distribution of the droplets, it is difficult to obtain proper density and
viscosity to calculate friction velocity uτ and viscous length scale δν . Different choices of
equivalent density and equivalent viscosity will cause differences in results. For ease of
analysis, we have taken the density and viscosity of the continuous phase to calculate the
friction velocity and viscous length scale, i.e. uτ = √

τi/ρf and δν = νf /uτ . The shear
stress at the inner cylinder is obtained by τi = 〈μri∂rω〉 for different cases, where μ

is the dynamic viscosity of the combined phase. For the single-phase case, u+ follows
the linear relation u+ = y+ well in the viscous sublayer (y+ < 5). At y+ > 30, u+ does
not exhibit a clear logarithmic shape due to the small Re in this study (Huisman et al.
2013). Moreover, the velocity profile shows an obvious discrepancy from the classical
logarithmic law profile with the typical values κ = 0.4 and B = 5.2, which is because the
boundary layer is not yet fully developed and the zero-pressure-gradient boundary layer
is not satisfied in the TC flow (Ostilla-Mónico et al. 2014). For the cases with neutral
droplets and low-viscosity droplets, u+ shifts slightly downwards in the buffer layer and
above, which has also been observed in the case of drag enhancement caused by finite-size
particles in plane-Couette flow (Wang, Jiang & Sun 2023). The downward shift can be
interpreted as a thinning of the buffer layer. Differently, u+ shifts slightly upwards in the
buffer layer and above for the case with light droplets, which is consistent with the case
of drag reduction caused by the polymer in turbulent channel flow (Li, Sureshkumar &
Khomami 2006). The upwards shift can be interpreted as a thickening of the buffer layer.
For the case with low-viscosity light droplets, u+ shifts upwards again due to their stronger
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Figure 10. Mean azimuthal velocity profiles near the inner cylinder. Here u+ = (ui − 〈uθ 〉)/uτ is the velocity
difference from the inner cylinder normalised by the friction velocity uτ and y+ = (r − ri)/δv is the distance
from the inner cylinder in units of the viscous length scale. The dotted lines show the linear relation u+ = y+
and the logarithmic law u+ = (1/κ) ln y+ + B with the typical values κ = 0.4 and B = 5.2 (Huisman et al.
2013).

drag reduction effect than that of the light droplets. In addition, due to the effect of the low
viscosity of the droplets within the viscous sublayer, u+ = y+ is no longer valid.

Appendix D. The effect of effective Reynolds numbers

In the case of light droplets and low-viscosity light droplets, one may wonder that the
drag reduction effect is due to the difference in effective Reynolds numbers. Therefore, it
is necessary to correct the Reynolds number to exclude the possibility of drag reduction
due to different effective Reynolds numbers. The effective density can be approximated
using ρϕ = (1 − ϕ)ρf + ϕρd. As for the effective viscosity, we note that there is no
model available to estimate the effective viscosity of a liquid–liquid two-phase system.
Our previous experimental results found that the effective viscosity increases with the
volume fraction of the dispersed phase (Yi et al. 2021). At low volume fractions and
low Reynolds numbers, the effective viscosity is very close to the model of Krieger and
Dougherty (KD) (Krieger & Dougherty 1959). In our study, the volume fraction is in the
range of 0 ≤ ϕ ≤ 10 % and Re = 6000. We therefore employ the KD model to estimate
the effective dynamic viscosity, i.e. μϕ = μf (1 − ϕ/ϕm)−2.5ϕm , where ϕm = 0.58. The
Reynolds number corrected by the effective density and effective viscosity can be defined
as Reeff = ρϕuid/μϕ , which is 5067 and 4389 for ϕ = 5 % and ϕ = 10 %, respectively.
The effective Nusselt number can be defined as Nueff = T/(4πμϕLr2

i r2
oωi/(r2

o − r2
i ))

and the uncorrected drag modulation based on the effective Nusselt number can be
written as Nueff /Nuϕ=0 − 1 = (T/Tϕ=0)(μf /μϕ) − 1 as listed in table 5, where Nuϕ=0 =
Tϕ=0/(4πμf Lr2

i r2
oωi/(r2

o − r2
i )) is the Nusselt number for the single-phase case at Re =

6000. Since the effective Reynolds number in the two-phase case is different from the
single-phase case, we have used T/Tϕ=0 − 1 rather than Nueff /Nuϕ=0 − 1 to characterise
the drag modulation as listed in table 1. The corrected drag modulation based on the
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ϕ ξρ = ρd/ρf ξμ = μd/μf Re Nueff /Nuϕ=0 − 1 Reeff Nueff /Nuϕ=0
eff − 1

5 % 1/4 1 6000 −16.61 % 5067 −10.05 %
5 % 1/4 1/4 6000 −23.92 % 5067 −17.92 %
10 % 1/4 1 6000 −36.37 % 4389 −25.97 %
10 % 1/4 1/4 6000 −46.62 % 4389 −37.89 %

Table 5. Drag modulation of light droplets and low-viscosity light droplets.
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Figure 11. The correction of the drag modulation characterised by the effective Nusselt number for the case
with 5 % low-viscosity light droplets.

effective Nusselt number can be obtained by Nueff /Nuϕ=0
eff − 1, where Nuϕ=0

eff is the Nusselt
number for the single-phase case at the effective Reynolds number. To obtain the corrected
drag modulation, we additionally simulate two single-phase cases at these two effective
Reynolds numbers (Reeff = 5067 and 4389) and obtain the corrected drag modulation by
Nueff /Nuϕ=0

eff − 1. See figure 11 for an illustration of the correction procedure, and the drag
modulation before and after the correction is listed in table 5. Although the magnitude of
drag reduction is reduced when the different Reynolds numbers between the two-phase and
single-phase cases are taken into account, the drag reduction effect by the light droplets
and low-viscosity light droplets is still significant. Therefore, we conclude that the drag
reduction cannot be attributed to the discrepancy in the effective Reynolds number.
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