
Prepared for
Jordan Oroshiba
Astria

Prepared by
Filippo Cremonese
Daniel Lu
Zellic

June 24, 2024

Astria Geth
Differential Security Assessment



Astria Geth Differential Security Assessment June 24, 2024

Contents About Zellic 4

Zellic © 2024 ← Back to Contents Page 2 of 16



Astria Geth Differential Security Assessment June 24, 2024

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 5

2. Introduction 6

2.1. About Astria Geth 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Incorrect ERC-20 deposit handling 11

4. Discussion 12

4.1. Discussion of themost significant changes 13

4.2. Testing 15

5. Assessment Results 15

5.1. Disclaimer 16

Zellic © 2024 ← Back to Contents Page 3 of 16



Astria Geth Differential Security Assessment June 24, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 4 of 16

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io


Astria Geth Differential Security Assessment June 24, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Astria from June 10th to June 19th, 2024. During this
engagement, Zellic reviewed Astria Geth's code for security vulnerabilities, design issues, and
general weaknesses in security posture.

1.2. Goals of the Assessment

This assessmentwasconductedby reviewing thedifferencesbetween theofficial EthereumGolang
implementation (Geth) and Astria's fork. Specifically, our review compared Geth release tag v1.14.3
(commit ab48ba42f4f34873d65fd1737fabac5c680baff6) with the Astria Geth code found at PR #21
(commit 5f9724be5ad41500855c9c6e6f76037e438f320c at the time of our review).

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody

1.4. Results

During our assessment on the scoped Astria Geth modules, we discovered one finding, which was
informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for Astria's benefit in
the Discussion section (4. ↗).

Zellic © 2024 ← Back to Contents Page 5 of 16



Astria Geth Differential Security Assessment June 24, 2024

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 0

■ Medium 0

■ Low 0

■ Informational 1

Zellic © 2024 ← Back to Contents Page 6 of 16



Astria Geth Differential Security Assessment June 24, 2024

2. Introduction 2.1. About Astria Geth

Astria contributed the following description of Astria Geth:

Astria is a decentralized sequencing layer that can be shared amongstmultiple rollups. It does
this by separating transaction sequencing and execution.

Astria geth is a fork of the official Ethereum golang implementation which enables the use of
geth as an EVM-compatible rollup transaction executor.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with themodules.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case

Zellic © 2024 ← Back to Contents Page 7 of 16



Astria Geth Differential Security Assessment June 24, 2024

basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped modules itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Page 8 of 16



Astria Geth Differential Security Assessment June 24, 2024

2.3. Scope

The engagement involved a review of the following targets:

Astria GethModules

Type Golang

Platform EVM-compatible

Target astria-geth

Repository https://github.com/astriaorg/astria-geth ↗

Version a30fd3d23b31dff26ded8abf373e0bc8050d08c7

Programs geth

2.4. Project Overview

Zellicwas contracted to performa security assessment for a total of 2.4 person-weeks. The assess-
ment was conducted by two consultants over the course of eight calendar days.

Zellic © 2024 ← Back to Contents Page 9 of 16

https://github.com/astriaorg/astria-geth


Astria Geth Differential Security Assessment June 24, 2024

Contact Information

The following project manager was associated
with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Filippo Cremonese
Engineer
fcremo@zellic.io ↗

Daniel Lu
Engineer
daniel@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

June 10, 2024 Start of primary review period

June 19, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 10 of 16

mailto:chad@zellic.io
mailto:fcremo@zellic.io
mailto:daniel@zellic.io


Astria Geth Differential Security Assessment June 24, 2024

3. Detailed Findings 3.1. Incorrect ERC-20 deposit handling

• Target: state_transition.go
• Category: CodingMistakes
• Severity: High
• Likelihood: N/A
• Impact: Informational

Description

The pull request under review rebases Astria preexisting changes on top of official
Geth 1.14.3. At the time of the start of this engagement, PR #21 HEAD was at com-
mit a30fd3d23b31dff26ded8abf373e0bc8050d08c7. During the first two days of our
engagement, Astria independently found and fixed some issues (seemingly origi-
nating from incorrect manual merge-conflict resolutions), updating the PR HEAD to
5f9724be5ad41500855c9c6e6f76037e438f320c. This included a relatively severe issue in
state_transition.go::TransitionDb.

The functionwasmodified byAstria to handle the newly introduceddeposit-transaction type. In the
initial version of the code, the function code appeared as follows:

func (st *StateTransition) TransitionDb() (*ExecutionResult, error) {
// if this is a deposit tx, we only need to mint funds and no gas is used.
if st.msg.IsDepositTx {

log.Debug("deposit tx minting funds", "to", *st.msg.To, "value",
st.msg.Value)

st.state.AddBalance(*st.msg.To, uint256.MustFromBig(st.msg.Value),
tracing.BalanceIncreaseAstriaDepositTx)

return &ExecutionResult{
UsedGas: 0,
Err: nil,
ReturnData: nil,

}, nil
}

if st.msg.IsDepositTx {
st.initialGas = st.msg.GasLimit
st.gasRemaining = st.msg.GasLimit
log.Debug("deposit tx minting erc20", "to", *st.msg.To, "value",

st.msg.Value)
}
/// ...

The initial condition is intended to handle only native deposit transactions, and it was incorrect.
ERC-20deposits always have a msg.Valueof zero but a nonempty msg.Data containing the calldata,

Zellic © 2024 ← Back to Contents Page 11 of 16



Astria Geth Differential Security Assessment June 24, 2024

which invokes the mint function of the destination contract that manages the bridged asset.

Impact

The TransitionDb functionwas incorrectly handling ERC-20deposit transactions as native deposit
transactions. This would have prevented successful bridging of ERC-20 assets, leading to the loss
of the deposited assets.

Recommendations

None. (The issuewas already independently found and fixed.)

Remediation

This issue has been acknowledged by Astria, and a fix was implemented in commit 5f9724be ↗.

The issuewas fixed as follows:

func (st *StateTransition) TransitionDb() (*ExecutionResult, error) {
// if this is a deposit tx, we only need to mint funds and no gas is used.

if st.msg.IsDepositTx {

if st.msg.IsDepositTx && len(st.msg.Data) == 0 {

log.Debug("deposit tx minting funds", "to", *st.msg.To, "value",
st.msg.Value)

st.state.AddBalance(*st.msg.To, uint256.MustFromBig(st.msg.Value),
tracing.BalanceIncreaseAstriaDepositTx)

return &ExecutionResult{
UsedGas: 0,
Err: nil,
ReturnData: nil,

}, nil
}

if st.msg.IsDepositTx {
st.initialGas = st.msg.GasLimit
st.gasRemaining = st.msg.GasLimit
log.Debug("deposit tx minting erc20", "to", *st.msg.To, "value",

st.msg.Value)
}
/// ...

Zellic © 2024 ← Back to Contents Page 12 of 16

https://github.com/astriaorg/astria-geth/commit/5f9724be5ad41500855c9c6e6f76037e438f320c


Astria Geth Differential Security Assessment June 24, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. Discussion of themost significant changes

This section documents noteworthy security-relevant differences between Astria Geth and the of-
ficial repository.

New gRPC service

TheGeth codebasewasmodified to add a gRPC endpoint exposing the executor interface required
by Astria (specifically, by the Astria conductor component).

This interface allows to create new blocks by executing transactions (via ExecuteBlock) and to up-
date the blockchain head (via UpdateCommitmentState).

The gRPC service is intended to be exposed only to a trusted conductor service, and by default it
binds only to the local loopback interface.

Mempool andminer changes

The codebase significantly simplified the blockminer so that transaction ordering is determined by
the order inwhich they are received via the gRPCservice from the conductor, which in turn receives
ordered transactions from the sequencer.

Deposit transactions

Astria added the new DepositTx transaction type toGeth, used to represent incoming bridge trans-
actions.

Gas charges

Deposit transactions do not charge any intrinsic gas; native deposits do not involve actual bytecode
execution and do not consume any gas, while ERC-20 deposits have a low gas budget (16,000) and
invoke the contract that represents the deposited asset. The gas budget is fixed and not taken from
any balance. Since all deposit transactions are not externally sourced but are instead generated by
the sequencer, no gas-related denial-of-service issues can occur.

Since deposit transactions do not consume any gas, they also do not originate gas refunds.

Validation

Deposit transactions skip several checks, entirely bypassing the StateTransition::preCheck

Zellic © 2024 ← Back to Contents Page 13 of 16



Astria Geth Differential Security Assessment June 24, 2024

function. Skipped checks include nonce verification, ensuring that the transaction is sent from an
EOA and not from a contract (which should be impossible as the private key for a contract address
is not recoverable) as well as minimum gas requirements. Even more notably, deposit transactions
are not subject to any sort of signature check; there is no need to provide a valid sender signature.

Skipping thesechecks is justifiedsincedeposit transactionsarenotexternally sourcedbut automat-
ically generated from deposit events by the sequencer (and validated by the conductor).

Execution

Deposit transactions are added to themempool alongside other Ethereum transactions. Their exe-
cution is handled by the same function that handles the other preexisting transaction types.

However, deposits are distinguished from normal transaction types via a boolean
field IsDepositTx. The most crucial part of deposits handling is implemented in
state_transition.go::StateTransition::TransitionDb. Deposits are divided into two kinds,
handled differently: native deposits and ERC-20 deposits.

Native deposits grant the recipient some balance denominated in the native currency of the chain.
These deposits are handled by increasing the recipient native balance and returning early.

ERC-20 deposits are handled almost identically to any regular transaction invoking a contract. This
is because when an ERC-20 deposit transaction generated by the sequencer is received from the
conductor, it is converted into a transaction invoking the mint function of the ERC-20 contract that
represents the bridged asset. The only changesmade to TransitionDb to handle ERC-20 deposits
concern gas budget, gas refunds, and coinbase tips. Due tomodifications in other functions (specif-
ically, skipping preCheck leading to not invoke buyGas), the gas budget of ERC-20 deposit transac-
tions is not set; therefore, a block of code that sets the appropriate gas limit was introduced.

Additionally, the function returns early to avoid originating gas refunds and distributing coinbase
tips.

Zellic © 2024 ← Back to Contents Page 14 of 16



Astria Geth Differential Security Assessment June 24, 2024

4.2. Testing

The forked go-ethereum repo includes a comprehensive test suite, and the Astria team has added
some additional tests to cover the functionality related to the protocol. However, a more compre-
hensive test suite would be beneficial to ensure the correctness of changesmade to the codebase.

In particular, we pointed out before the engagement that the ExecuteBlock function in grpc/execu-
tion/server.goomittedacheck that special transactions (suchasdeposit transactions) shouldnotbe
included in sequenced data. More explicit reasoning about incorrect behavior through tests would
have helped catch this issue before it wasmerged.

Similarly, Finding 3.1. ↗ was in fact a regression, where the commit 5f9724be ↗ removed a correct
check thatwas previously added. A negative test case for the original logic could have helped catch
this issue before it wasmerged as well.

Zellic © 2024 ← Back to Contents Page 15 of 16

https://github.com/astriaorg/astria-geth/commit/5f9724be5ad41500855c9c6e6f76037e438f320c


Astria Geth Differential Security Assessment June 24, 2024

5. Assessment Results At the time of our assessment, the reviewed codewas not in use onmainnet.

During our assessment on the scoped Astria Geth modules, we discovered one finding, which was
informational in nature.

5.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 16 of 16


	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Astria Geth
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Incorrect ERC-20 deposit handling

	Discussion
	Discussion of the most significant changes
	Testing

	Assessment Results
	Disclaimer


