
Comprehensive training in data and technology for
diverse data careers

Data Academy

Overview
The TeamEpic Data Academy provides comprehen-
sive and tailored training in the dynamic field of data
and technology. Our carefully crafted curriculum
caters to the diverse needs of individuals aspiring to
excel in various data-driven careers. Whether
graduates have ambitions of becoming a Data
Scientist, Data Engineer, Prompt Engineer, or
pursuing specialized roles, our academy equips them
with the necessary training and resources to develop
the essential skills.

At TeamEpic Data Academy, we follow a
career-specific roadmap for each path, ensuring
that our graduates gain a comprehensive
understanding of their chosen field and emerge with
the expertise required to thrive. Our intensive
training program is designed to be completed within
a four-month timeframe, with graduates dedicating
25-30 hours per week to course content and project
work.

Our training approach combines technical prowess
with a user-centric and problem-solving mindset.
Graduates are equipped with structured
frameworks and templates to analyze and devise
innovative solutions, enabling them to effectively
tackle complex business challenges. We also
emphasize the utilization of cutting-edge technolo-
gies, including AI, ML, Hyper Automation, Microser-
vices, and Cloud computing, to develop impactful
solutions that drive tangible business outcomes.

In addition to technical training, the TeamEpic Data Academy places significant emphasis on
developing essential business skills. Our graduates receive training in Design Thinking, Product
Success, UI/UX, Next-Gen AI, and Storytelling, enabling them to grasp the broader context of their
work and effectively communicate their ideas and solutions.

To deliver a comprehensive learning experience, we leverage various platforms such as the Content
Engine, Learning Management System, and eBooks Platform. Our courses are structured in
bite-sized modules, offering a blend of reading materials, recommended external courses,
auto-evaluated assessments, and project opportunities. This approach ensures that our partici-
pants acquire theoretical knowledge while engaging in practical application.

In summary, the TeamEpic Data Academy offers a robust and meticulously designed training
program that prepares individuals for successful careers in the data and technology industry. Our
comprehensive curriculum, focus on practical application, and emphasis on both technical
expertise and business acumen equip our graduates with the knowledge and capabilities needed to
excel in today's data-driven landscape.

Key Features
The Skills Acquired The Learning Process
Over the course of four months, our
grads learn the following:

In-depth understanding of data analysis,
engineering, and science principles for
effective decision-making.

Proficiency in leveraging AI, ML, and
Automation technologies to solve complex
business problems and drive innovation.

Familiarity with Intelligent Process
utomation (IPA) in a dynamic multi-Tech
eBusiness environment, enabling graduates
to optimize operational efficiency.

Business skills development in critical areas
such as Design Thinking, Product Success,
UI/UX, Next-Gen AI, and Storytelling,
empowering graduates to communicate
effectively and deliver impactful solutions.

Mastery of structured frameworks and
templates for analyzing and ideating
solutions, ensuring graduates possess a
systematic approach to problem-solving.

Our online curriculum, meticulously curated
by industry experts, provides a deep
understanding of key AI concepts through a
blend of comprehensive materials. These
include engaging projects, insightful
lectures, theory-based modules, coding
exercises, and relevant reading/viewing
exercises, along with career-focused
coursework.

Project-based learning forms a
cornerstone of our program, allowing
graduates to apply their knowledge
through 12 mini-projects and 3 capstone
projects. This practical approach hones
their skills and solidifies their understanding
of the learning process.

Competency tracks offer graduates the
opportunity to specialize in specific areas
of expertise. By selecting unique skills
within the AI domain, they can differentiate
themselves as highly skilled professionals in
their chosen field.

TE Academy

GEN-AI for
Business

Essential
Business Skills

Trend Complementary Core Transform

Customize
Data CaseXcel

Workshop IPA & DLP

Custom Program Harnessing GEN-AI
for every role in your workforce

Key Training Details

4 months
Training Length

25-30
Hours per week

15 total projects
12 mini projects 3 guided
capstones

Tools & Skills

The Valuable Benefits
Personalized 1-on-1 Support: Each graduate will be paired with a dedicated expert who will guide
them through the curriculum, offer valuable feedback, and address their inquiries. This mentorship
ensures personalized attention and provides an insider's perspective on the industry.

Career Development Assistance: Our career coach will assist graduates in
navigating career-specific modules, including strategic planning, resume and LinkedIn profile
development, networking, and conducting mock interviews. This comprehensive support equips
graduates with the necessary skills to excel in their professional journey.

Building a data
career portfolio

Building a Data Career Portfolio

Git - version control

Semantic versioning

Keep a changelog

Notebooks

Jupyter Notebook

Google Collab

Github Gitlab

Project deployment

Microsoft Azure

Google Cloud

Heroku

Read Papers

Zeta Alpha

Papers with Code

AWS Cloud

Required for any Data Career Path

Choose Your Path

Analytics/AI Job

Fundamentals (Data Role)

Matrices & Linear
Algebra Fundamentals

Relational & Non-relational
Databases

Basics

Python Promgramming

Data Soruces

Database Basics

SQL+ Joins

NoSQL

Expressions

Variables

Data Structures

Functions

Install package (vai pip, conda...)

Code Style

Excel

MangoDB

PostgreSQL

Numpy

Pandas

Scikit-Learn

PyTorch

TensorFlow

Matplotlib

Rapid Mlner

Kaggle

JSON

XML

CSV

Tabular Data

Data Frames & Series

Extract Transform load

Reporting vs BI vs Analytics

Data Formats

Regular Expressions (RegEx)

Python Basics

Important libraries

Virtual Environments

Jupyter Notebools/Lab

Data Mining

Web Scraping

Public Datasets

Fundamental (Data Role)

Data Science Roadmap

Machine Learning Roadmap

Deep Learning Roadmap

Generative AI Roadmap

Data Engineer RoadmapData Analyst

Data Scientist

Data Engineer

Machine Learning
Engineer

Deep Learning
Practitioner

Prompt Engineer

Principal Component
Analysis

Exploratory Data Analysis

Dimensionality Reduction

Normalization

Data Cleaning, Handling
Missing Values

Estimators

Binning Sparse Values

Feature Extraction

Denoising

Sampling

Statistics

Probability Theory

Continuous Distributions

Discrete Distributions

Summary statistics

Hypothesis Testing

Confidence interval

Mente Carlo Method

Data Scientist Road Map

Normal/Gaussian

Uniform (Continuous)

Beta

Dirichlet

Exponential

X2 (chi-squared)

Uniform (discrete)

Binomial

Multinomial

Hypergeometric

Poisson

Geometric

Expectation & mean

Variance & Standard deviation

Covariance & correlation

Medium & quartile

Interquartile range

Precentile & quartile

Mode

p-Value

Chi2 test

F-test

T-test

Randomness & rondom variable

Probability distribition

iid

cdf, pdf, pmf

Conditional probability
& Bayes theorem

Cumulative distribution function

Probability density function

Probability mass function

Law of large number

Central limit theorem

Important laws

Maximum likelihood Estimation

Kernel Density Estimation

Estimation

Visualization

Chart Suggestions

Web

Dashboards

BI

Data Engineer Road Map

Matplotib

Plotnine

Bokeh

Seaborn

Ipyvolume(3D data)

Vega-Lite
Streamlit

D3.js

Dash

Tableau

PowerBI

Hadoop (Large data)

Spark (in memory)

RAPIDS (on GPU)

Hive (Data Warehouse)

Elastic

Google BigQuery

Flink

Dask

Apache Airflow

Snowflake

Amazon Redshift

MLflow

Kafka

Python

Architecture Patterns

Data Architectures

PrinciplesData Processing Tools

Horizontal vs vertical scaling

Map Reduce

Data Replication

Name & Data Nodes

Job & Task Tracker

Data Formats

Data Discovery

Data Source & Acquisition

Data Integration

Data Fusion

Transformation & Enrichment

Data Survey

OpenRefine

Using ETL

Data lake

Data Warehousing

Data Mesh

Deployment

Databases

Cloud Services

Machine Learning Road Map

Ordinal Variables

Categorical Variables

Linear Regression

Poisson Regression

Numerical Variables

Zookeeper

Kubernetes

Cassandra

MongoDB

Neo4j

AWS SageMaker

Google AutoML

Microsoft Azure

Scalability

Concepts, Inputs & Attribures

Overfitting / Underfitting

Precision vs Recall

Bias & Variance

Supervised Learning

Unsupervised Learning

Ensemble Learning

Reinforcement Learning

Regression

Apriori Algorithm

ECLAT Algorithm

FP Trees

Association Rule Learning

Hierarchical Clustering

K-Means Clustering

DBSCAN

HDBSCAN

Fuzzy C-Means

Mean Shift

Agglomerative

OPTICS

Clustering

Principal Component Analysis

Randam Projection

NMF

T-SNE

UMAP

Dimensionality Reduction

Classification Rate

Decision Trees

Logistic Regression

Naive Bayes Classifiers

K-Nearest Neighbour

SVM

Gaussian Mixture Models

Q-learning

Classification

Cost functions & gradient
Descent

Training, validation and
test data

Machine Learning

Methods

Lift

Sentiment Analysis

Collabarative Filtering

Tagging

Prediction

Important libraries

Model Deployment

Understanding Neural
Networking

Loss Functions

Activation Function

Weight Initialization

Vanishing / Exploding
Gradient Problem

Deep Learning Papers Reading Roadmap

Zeta Alpha Search Engine for papers

 Bagging

Stacking

Boosting

Framework

Flask

Django

Keras

Bottle

Scikit-Learn

TensorFlow

Spacy

Pandas

Numpy

PyTorch

Matplotlib

Cherrypy

Deep Learning Road Map

Machine Learing
with Python

Tools

Papers

Neural Networks

Docker

Kubernetes

Gradio

MLflow

Feedforward neural
network

Autoencoder

Optimizers

Learning Rate Schedule

Batch Normalization

Batch Size Effects

Regularization

Multitask Learning

Transfer learning

Curriculum Learning

Tensorflow

PyTorch

Keras

MLflow

Transformer

Siamese Network

Residual Connections

Evolving Architechtures/NEAT

Convolutional Nerual
Network (CNN)

Recurrent Nerual
Network (RNN)

Generative Adversarial
Network (GAN)

Pooling

LSTM

GRU

Encoder

Decoder

Attention

SGD

Momentum

Adam

AdaGrad

Nadam

RMSProp

Architectures

Training

Tools

Ref: https://aigents.co/learn/roadmaps/deep-learning-roadmap

Distillation

Quantization

Neural Architecture
Search (NAS)

Model optimization
(Advanced)

Prompt Engineer

Generative AI Road Map

Early Stopping

Dropout

Parameter Penalties

Data Augmentation

Adversarial Training

TE Data Academy:
Competency Development

Data CaseXcel Workshop

TE Training Plan
4 months
40 case-studies + 12 Mini Projects
+ 3 Capstone Projects

M1
Data Casexcel
Workshop-Core

M3
Gen-AI & Essential
Business Skills

M4
IPA, DLP, Client-Specific
Training

M2
Data Casexcel
Workshop-Specialization

The Data CaseXcel offers a wide range of workshops designed with an experiential learning approach and
a bite-size learning structure. Each course features case studies driven by AI-voiced videos, available in
different modes such as Expert Videos, Scenario-based videos, Screen-cast videos, and Demo videos. In
addition to the videos, there are audio podcasts, reading materials, auto-evaluated assessments and
capstone projects to reinforce the learning.

Title Workshop
Duration

TE Workshop for Data Analyst 240 Hours 20 Hours 100 Hours

240 Hours 20 Hours 100 Hours

240 Hours 20 Hours 100 Hours

240 Hours 20 Hours 100 Hours

240 Hours 20 Hours 100 Hours

240 Hours 20 Hours 100 Hours

240 Hours 20 Hours 100 Hours

240 Hours 20 Hours 100 Hours

240 Hours 20 Hours 100 Hours

240 Hours 20 Hours 100 Hours

240 Hours 20 Hours 100 Hours

240 Hours 20 Hours 100 Hours

TE Workshop for Data Engineer

TE Workshop for Data Scientist

TE Workshop for Machine Learning Expert

TE Workshop for MLOPs Engineer

TE Workshop for Deep Learning Specialist

TE Workshop for NLP Practitioner

TE Workshop for Prompt Engineer

TE Workshop for XAI Professional

TE Workshop for Generative AI Scientist

TE Workshop for AI Ethics Professional

TE Workshop for RPA Professional

Project Hours Recommended
ILT Hours

Essential Business Skills

Gen-AI

Business Skill Programs
The Business Skill Program offer a comprehensive courses designed to enhance professionals' expertise
across various key areas. Participants will develop a deep understanding of design thinking, product success
strategies, UI expertise, storytelling techniques, and the evolving landscape of next-gen marketing.
Through this program, individuals will acquire a versatile skill set, empowering them to drive innovation,
create captivating user experiences, and shape impactful marketing campaigns in today's dynamic
business environment.

Course Title

NP Certified Design Thinking Practitioner 50 Hours 20 Hours

100 Hours 20 Hours

50 Hours 20 Hours

100 Hours 30 Hours

50 Hours 10 Hours

NP Certified Product Success Leader

NP Certified UI/UX Expert

NP Certified Storytelling with Data Visualisation

NP Certified Next-Gen AI Marketer

Recommended
ILT Hours

Course Duration

Gen AI for Business
The Gen AI for Business program offers a wide range of courses that equip participants to navigate the AI
landscape and unlock transformative opportunities in the rapidly evolving business landscape. Through a
curated curriculum covering AI fundamentals, noteworthy applications, automation strategies, and ethical
considerations, participants gain insights into harnessing Gen-AI for strategic decision-making, process
optimization, and innovation.

Course Title

Overview of Gen-AI: Imperatives for Digital Business 50 Hours 10 Hours

50 Hours 10 Hours

50 Hours 10 Hours

120 Hours 60 Hours

120 Hours 60 Hours

Discriminative Vs Generative AI for Business

Application Fields & Potential Trends

120 Hours 60 Hours

120 Hours 60 Hours

120 Hours 60 Hours

120 Hours 60 Hours

50 Hours 10 Hours

120 Hours 60 Hours

AI- driven Product Strategy (Product Analysis)

Recommended
ILT Hours

Course Duration

NLP & Chatbots

Computer Vision & Image Recognition

Reinforcement Learning for Business Optimization

Noteworthy GAN Applications: 3D Object/Interactive Image
Generation, Data Augmentation

Managing AI Transformation & Automation

Gen AI: The Good, Bad and Ugly

Strategy to develop your own application using Gen AI

Up-Skilling Programs for
Corporate Success

Intelligent Process
Automation Program
in a Multi-Tech eBusiness Environment
A program to help participants:
• Demonstrate a user-centric approach and solution mindset

to problem-solving that is

• less reactive and more preventive and restorative

• Use a structured framework and templates to analyze,

ideate solutions, resolve business problems

• Become aware of how technologies AI ML, Hyper Automation,

Microservices, and Cloud computing can be leveraged for

creating the best solution that will deliver business impact

• Relate and suggest the most appropriate technology for

the solution keeping the end goal and user in mind

Digital Leader Program
(Using Gen AI)
in a Multi-Tech eBusiness Environment
A program to help participants:
• Discover the top digital disruptions that you can leverage

for sustainable

• innovation

• Think about what new solutions might make sense for the

future

• Consider and selectively adopt new technologies for business

impact and growth

• Adopt new technologies for innovating and creating new value

to business and clients

10 Live Hour

Artificial
Automation

Intelligent
Automation

Robotic process
Automation

Product Recommendation for E-Commerce

Project List

Predictive Analytics for Sports

Code Assistant

Q & A – Ask Me Anything Bot

Text Summarization

GPT PROJECTS

Network Anomaly Detection using
ML Technique

Mass Approval Detection and
Resource Allocation

Mental Health Slack Bot

Stack Overflow Assistant

Customer LTV Prediction for
Financial Institutions

Product Recommendation
for E-Commerce

Goal
Implement a recommender system
for an e-commerce store to
provide personalized product
recommendations using clustering,
content-based filtering, and
incorporating product reviews, and
deploy the models in a web
application.

Tech Stack

Data
The project utilize a dataset
containing product information,
including attributes, descriptions,
and reviews. Additional data may
include customer information,
ratings, and historical purchase
data. The data will be sourced from
the e-commerce store's database
or publicly available datasets.

Approach
• Data Preparation & EDA

• Content-based Filtering

• Collaborative Filtering

• Neural-Network based

Recommender

• Hybrid Recommender

• Programming Languages:
 Python 3.9, SQL

• Libraries: Pandas, Numpy,
Matplotlib, Sci-kit-learn,
PyCaret

• Coding Environment:
Google Colab, Anaconda
(Jupyter Notebook)

• Web Framework: FastAPI (for
building the API)
Deep Learning Framework:
TensorFlow, Keras (for neural
network-based recommender)

• Database Management:
• SQL (for data storage and

retrieval)

Success Metrics
• Recommendation Accuracy: Measure the accuracy of the recommendation

models by evaluating how well the recommended products align with customers'
preferences and actual purchases.

• User Engagement: Track user engagement metrics, such as click-through rates,
conversion rates, and time spent on the site, to assess the impact of personalized
recommendations on user behavior.

• Customer Satisfaction: Gather feedback from customers to gauge their
satisfaction with the recommendations received and their overall shopping
experience.

• Business Impact: Measure the impact of the recommender system on key business
metrics, such as sales revenue, average order value, and customer retention.

• API Performance: Monitor the performance of the deployed web application,
including response times, uptime, and user feedback, to ensure a seamless user
experience.

Insights
This project enhances the user
experience in an e-commerce store
by providing personalized product
recommendations. Through various
recommendation techniques,
including customer attributes,
descriptions, reviews, ratings, and
purchase data, the store tailors
recommendations to customer
preferences. The gained insights
enable understanding of customer
behavior, leading to enhanced
satisfaction and increased sales.

 Extract and preprocess relevant data from
the e-commerce store's database.

Perform exploratory data analysis (EDA) to
gain insights into the dataset and understand
product and customer preferences.

Utilize natural language processing
techniques to analyze product attributes,
descriptions, and other textual data.

Apply feature extraction methods to repre-
sent products in a meaningful feature space.

Develop a content-based recommendation
system based on product attributes and
descriptions to suggest similar items.

Use customer ratings and historical purchase
data to build collaborative filtering models.

Implement user-based and item-based
collaborative filtering techniques for person-
alized recommendations.

Explore advanced techniques like matrix
factorization or neighborhood-based
approaches to improve recommendation
accuracy.

Implement deep learning approaches, such
as neural networks, utilizing techniques like
embedding layers, CNNs, or RNNs.

Create a hybrid recommender system by
combining content-based filtering, collabo-
rative filtering, and neural network-based
approaches. Develop a mechanism to weight
and combine recommendations for more
diverse and accurate suggestions.

Customer LTV Prediction for
Financial Institutions

Goal
Develop a predictive model for
financial institutions to estimate
loan-to-value (LTV) ratios using
behavioral machine learning
techniques. The model will be
deployed as an API for internation-
al financial institutions as a credit
risk tool.

Tech Stack

Data
Demography Table: Contains
customer demographic information.
Bureau Data: Includes data from
credit bureaus and other relevant
financial sources.
Contributor ID: Identifies the type
of financial institution providing
the loan.
Bank Name: Name of the bank
associated with the account.
Account Type: Indicates the type of
loan or credit facility.
Description: Additional description
or category for the account type.

Approach
• Data Collection

• Data Preparation

• Feature Engineering

• Model Development

• Model Validation

• Model Deployment

Programming Languages:
Python

Libraries:
Pandas, Numpy, Matplotlib,
Seaborn, Sci-kit-learn, PyCaret

Coding Environment:
Google Colab, Anaconda
(Jupyter Notebook)

Web Framework:
Flask (for building the API)

Deep Learning Framework:
TensorFlow, Keras (for neural
network-based recommender)

Insights:
This project analyze and model the
loan-to-value (LTV) ratio, a vital credit
risk indicator for financial institutions.
By uncovering influential factors and
patterns through data analysis, it
enables informed lending decisions and
effective credit risk management.

Success Metrics
Prediction Accuracy: Measure the accuracy of the LTV predictions by comparing them to actual LTV ratios.

Model Performance: Evaluate the model's performance using appropriate metrics such as mean absolute error or R-squared.

Business Impact: Assess the impact of deploying the LTV prediction model on financial institutions, considering factors like improved risk
management, cost reduction, and enhanced decision-making processes.

User Feedback: Gather feedback from users of the deployed API to gauge its usefulness and effectiveness in real-world scenarios.

Gather relevant customer data from the
demography table, bureau data, and
additional sources.

Clean and transform the data, handle
missing values, and address any data quality
issues.

Extract relevant features from the data to
enhance the predictive power of the model.

Utilize behavioral machine learning
techniques to train a predictive model for
LTV estimation.

Assess the performance of the model using
appropriate evaluation metrics and valida-
tion techniques.

Create an API to deploy the trained model,
allowing users to access LTV predictions.

EDA | ML (Regression) | Feature Selection |
Model Evaluation (MAE, R2) | Model
Enhancement (Ensemble Techniques,
Finetune-hyperparameters)

Mass Approval Detection and
Resource Allocation

Goal
The project aims to detect mass
approvals in the IT/software
request approval process and
optimize resource allocation.
By analyzing log data, it identifies
suspicious approval patterns and
recommends default resources and
applications based on individual
requirements.

Tech Stack

Data
Log data containing information
about software/IT requests, includ-
ing requestee details, request IDs,
request types, request status,
account names, entitlements,
approval types, approvers, approval
statuses, and timestamps. Addition-
ally, user data will be used, including
employee IDs, employee types,
departments, divisions, and HR
organization codes.

Programming Languages:
Python

Libraries:
Pandas, Numpy, Matplotlib,
Seaborn, Sci-kit-learn, PyCaret

Algorithms: Clustering, Anamoly
detection

Coding Environment:
Google Colab, Anaconda
(Jupyter Notebook)

Web Framework:
Flask/DJango (for building the API)

Deep Learning Framework:
TensorFlow, Keras (for neural
network-based recommender)

Insights:
This project enhances resource
allocation and improves the approval
process in the IT/software domain. By
analyzing log data and detecting mass
approvals, it ensures accuracy and
integrity. The recommendation system
suggests customized default resources
and applications, leading to improved
efficiency and reduced unauthorized
access.

Success Metrics
Mass Approval Detection Accuracy: Measure the accuracy of the mass approval
detection algorithm by comparing the flagged mass approvals with known
 instances of suspicious approval patterns.

Resource Allocation Efficiency: Evaluate the efficiency of the recommendation
system by tracking the utilization of default resources and applications and
assessing whether they align with individual requirements.

Reduction in Unauthorized Access: Measure the reduction in unauthorized access
to resources by monitoring approval patterns and tracking instances where
inappropriate approvals are avoided.

User Satisfaction: Gather feedback from employees regarding the usefulness and
relevance of the recommended default resources and applications to assess user
satisfaction and adoption.

Approach
• Timeline of Development Phase

• EDA

• Data Preprocessing

• Mass Approval Detection

• Recommendation System

 Define development timeline for tasks: data
collection, preprocessing, model develop-
ment, and evaluation.

Perform exploratory data analysis on log
data to gain insights and identify patterns or
anomalies.

Analyze distribution of approval types,
statuses, and request types for overall
understanding.

Clean and preprocess log data, handling
missing values, normalization, and feature
engineering.

Merge log data with user data based on
employee IDs to enrich the dataset.

Define criteria for identifying mass approv-
als, such as high number of approvals by the
same approver within a time period or for
the same request type.

Develop algorithms to detect suspicious
approval patterns and flag potential mass
approvals.

Apply machine learning techniques like
clustering or anomaly detection for identify-
ing unusual approval behavior.

Build a recommendation system to suggest
default resources and applications based on
employee requirements and roles.

Utilize employee data to understand needs
and preferences, and apply collaborative or
content-based filtering techniques for
personalized recommendations.

Network Anomaly Detection using
ML Technique

Goal
The project aims to develop a
machine learning model for
network anomaly detection to
differentiate normal network
connections from malicious
attacks. By accurately classifying
connections, the model enhances
network security by identifying and
preventing unauthorized access
and intrusions.

Tech Stack

Data
The project will utilize a dataset
containing network connection
information. Each connection is
labeled as either "normal" or a
specific type of attack. The dataset
includes features such as source IP
address, target IP address, protocol,
and TCP packet information.

Programming Languages:
Python 3.9

Libraries:
Pandas, Numpy, Matplotlib,
Seaborn, Sci-kit-learn, PyCaret

Algorithms: Decision Trees,
Random Forest, SVM

Data Preprocessing:
Normalization, Feature Scaling

Model Evaluation: Accuracy,
Precision, Recall, F1 Score

Insights
By developing a machine learning
model, the project identifies anomalies
and unauthorized access attempts,
providing valuable insights for network
administrators to implement security
measures and protect computer
networks.

Success Metrics
Model Accuracy: Measure the accuracy of the machine learning model in
classifying network connections.

Attack Detection Rate: Evaluate the model's performance in detecting different
types of attacks.

False Positive Rate: Assess the rate of incorrectly classifying normal connections
as attacks.

False Negative Rate: Evaluate the rate of incorrectly classifying actual attacks as
normal connections.

Robustness and Efficiency: Assess the model's robustness through cross-validation
and evaluate its computational efficiency for real-time or near-real-time
detection.

Approach
• Overview, Scope & Objectives

• Workflow

• EDA

• Proposed Solution

• Model Building & Evaluation

Define the problem statement and
emphasize the importance of network
anomaly detection for network security.

Specify the project scope and objectives to
be achieved.

Outline the high-level workflow, including
data preprocessing, feature engineering,
model development, and evaluation.

Perform exploratory data analysis on the
network connection dataset.

Analyze the distribution of normal
connections and different types of attacks.

Identify patterns and anomalies in the data
by exploring feature relationships.

Select appropriate machine learning
techniques and algorithms for network
anomaly detection.

Preprocess the data by applying
normalization or scaling methods.

Determine relevant features and evaluate
their importance for model development.

Split the dataset into training and testing sets
and train a predictive model using algorithms
like decision trees, random forests, or
support vector machines.

Predictive Analytics for Sports

Goal
The project aims to create a player
performance tracking and
evaluation system for a sports
franchise, initially focusing on
cricket. The system allows the
organization to monitor player
performance, select players for
auctions, evaluate skills, identify
development areas, and track
training routines.

Tech Stack

Data
The project will utilize a dataset
containing cricket player informa-
tion, including performance metrics,
player skills, training routines, and
development areas. The dataset
may include features such as batting
average, strike rate, bowling
average, fielding statistics, player
rankings, and match-specific data.

Programming Languages:
Python 3.9

Libraries:
Pandas, Numpy, Matplotlib,
Seaborn, Plotly, Tableau

Algorithms: Regression,
Classification, Ensemble Methods,
Deep Learning

Deep Learning Framework:
TensorFlow, Keras (for neural
network-based recommender)

Insights
This project provide insights into
cricket player performance, helping
the sports franchise organization make
informed decisions regarding player
selection, auctions, and player
development. The insights gained from
the system optimize team composition
and enhance player performance.

Success Metrics
Prediction Accuracy: Measure the accuracy of the player performance prediction
model in estimating various performance metrics, such as batting average, strike
rate, or bowling average.

Player Ranking: Evaluate the model's ability to rank players based on their overall
value and suitability for auctions.

Development Area Identification: Assess the model's effectiveness

Approach
• Problem Statement

• Player Analysis

• Preliminary Model Development

• Model Enhancement

• Dashboard

Define problem statement and project
objectives for cricket player performance
tracking and evaluation system.

Plan to expand the system to other sports
teams in the future.

Perform data preprocessing tasks: cleaning,
handling missing values, and transformation.

Explore and analyze dataset, address data
quality issues.

Analyze performance metrics like strike rate,
overall value, and critical situation handling.

Identify top performers based on batting
average, bowling average, and fielding
statistics.

Conduct statistical analysis to identify corre-
lations between performance metrics and
player skills.

Develop preliminary model using machine
learning techniques for player performance
prediction.

Evaluate model performance using appro-
priate metrics and cross-validation.

Develop interactive dashboard for visualiz-
ing player performance, evaluation results,
and insights.

Text Summarization
GPT PROJECTS

Goal
The goal of this project is to
develop an AI application that can
summarize long and complex text
documents into concise and
easy-to-understand summaries.
The application will leverage NLP
techniques to automatically
generate summaries, saving time
and effort for users who need to
process large volumes of textual
information.

Tech Stack

Data
The project will utilize a diverse
dataset consisting of long text
documents from various domains.
The dataset include articles,
research papers, news reports, or
any other type of text that requires
summarization.

OpenAI API (GPT-3.5)

Python

Langchain (language modeling
framework)

VectorDB (database management
system)

Insights
The project develops an AI solution for
automated text summarization, aiding
users dealing with large volumes of
text. By summarizing complex
documents, the application extracts
key information swiftly. It showcases
NLP techniques, particularly text
summarization, and highlights the
capabilities of language models like
GPT-3.5.

Success Metrics
Summary Accuracy: Evaluate the accuracy of the generated summaries by
comparing them with human-generated summaries or reference summaries.

Coherence and Readability: Assess the coherence and readability of the generat-
ed summaries by analyzing factors such as grammar, sentence structure, and flow
of information.

Time Efficiency: Measure the time saved by using the text summarization applica-
tion compared to manually reading and summarizing the original text.

User Feedback: Gather user feedback to assess the usefulness and effectiveness
of the text summarization application in real-world scenarios.

Approach
• Problem Statement

• Data Collection & Preparation

• Text Summarization

• Model Development

• Application Deployment

1. Define the problem statement and project
objectives for developing a text summariza-
tion AI application.

2. Discuss the importance and use cases of
text summarization in various domains.

3. Collect a diverse dataset of long text docu-
ments suitable for summarization.

4. Preprocess the data by cleaning, normaliz-
ing, and transforming the text.

5. Explore extractive and abstractive text
summarization techniques.

6. Implement extractive techniques to identi-
fy important sentences and create summa-
ries.

7. Implement abstractive techniques to
generate summaries by understanding the
context.

8. Utilize OpenAI's GPT-3.5 model and
fine-tune it with the dataset.

9. Use Langchain language modeling frame-
work for development and integration.

10. Build a user-friendly interface or
integrate the summarization model into an
existing application, leveraging VectorDB for
efficient data storage and retrieva

Q & A – Ask Me Anything Bot

Goal
Develop an AI chatbot capable of
accurately and contextually
answering a wide range of queries
on various topics. The chatbot
should provide human-like conver-
sational experiences and demon-
strate a high level of natural
language understanding.

Tech Stack

Data
Collect and preprocess a diverse
dataset of questions and answers
from various domains.

Augment the dataset with relevant
online resources, such as FAQs,
forums, and knowledge bases

Incorporate user interactions and
feedback to improve the chatbot's
performance over time

Programming Languages: Python
for model development and
training

Deep Learning Frameworks:
TensorFlow or PyTorch for building
and training the chatbot model.

Web Development: HTML, CSS,
and JavaScript for creating a
user-friendly chatbot interface.

Deployment: Docker containers
and cloud platforms like AWS or
Google Cloud for hosting the
chatbot.

Insights
Monitor and analyze user interactions
and feedback to identify areas for
improvement.

Track user satisfaction levels and
sentiment analysis to assess the
chatbot's performance.

Analyze conversational data to identify
patterns, common queries, and
user preferences for continuous
enhancement.

Success Metrics
Accuracy: Measure the chatbot's ability to provide correct answers to user
queries.

Contextual Understanding: Evaluate how well the chatbot comprehends user
intent and context.

User Satisfaction: Assess user feedback and ratings to determine satisfaction
levels.

Response Time: Measure the chatbot's speed in providing responses to ensure
real-time processing.

Scalability: Evaluate the chatbot's performance under increased user load and
concurrent interactions.

Approach
• Problem Statement

• Data Collection & Preparation

• Model Development

• Application Deployment

Design and train a deep learning model using
a sequence-to-sequence architecture.

Utilize transformer-based models for their
ability to handle long-range dependencies
and capture context.

Employ transfer learning techniques to
leverage pre-trained language models like
GPT-3.5 to bootstrap the chatbot's knowl-
edge.

Implement a retrieval-based or genera-
tive-based approach, depending on the
nature of the questions and available
resources.

Natural Language Processing (NLP): Apply
NLP techniques to preprocess and clean the
input data, including tokenization, stemming,
and lemmatization.

Named Entity Recognition (NER): Extract
important entities from user queries to
provide more relevant responses.

Intent Classification: Classify user intents to
better understand the purpose of the queries
and generate appropriate responses.

Sentiment Analysis: Analyze user sentiment
to tailor responses accordingly, ensuring a
more personalized interaction.

Code Assistant

Goal
Develop an AI assistant that can
understand, debug, and assist with
code, aiming to increase efficiency
and solve programming problems.
The assistant should provide
accurate suggestions, identify
bugs, and offer solutions to
improve code quality.

Tech Stack

Data
Collect a diverse dataset of code
snippets, programming problems,
and their corresponding solutions.

Augment the dataset with code
repositories, online programming
forums, and open-source projects to
capture real-world code scenarios.

Include code annotations,
comments, and documentation to
enhance the assistant's
understanding of programming
language semantics.

Programming Languages: Python
for model development and
training

Deep Learning Frameworks:
TensorFlow or PyTorch for building
and training the chatbot model.

Web Development: HTML, CSS,
and JavaScript for creating a
user-friendly chatbot interface.

Deployment: Docker containers
and cloud platforms like AWS or
Google Cloud for hosting the
chatbot.

Insights
Analyze user interactions and
feedback to identify common
programming challenges and areas for
improvement.

Monitor code quality metrics, such as
code complexity and bug occurrences,
to assess the assistant's impact on
code improvement.

Track user productivity metrics, such as
time saved or reduced debugging time,
to measure the assistant's efficiency.

Success Metrics

Code Understanding: Measure the assistant's ability to accurately comprehend
code snippets and programming problems.

Bug Detection: Evaluate the assistant's capability to identify and suggest fixes for
code bugs.

Code Quality Improvement: Assess the impact of the assistant on improving code
quality, including metrics like reduced code complexity and improved
performance.

User Satisfaction: Gather user feedback and ratings to determine satisfaction
levels with the assistant's suggestions and assistance.

Time Saved: Measure the time saved by developers through the assistant's
efficient code suggestions and debugging assistance.

Approach
• Natural Language Processing

• Semantic Analysis

• Symbolic Execution

• Code Generation

 Design and train a deep learning model using
techniques like sequence-to-sequence
modeling or code2vec.

Incorporate techniques from program
synthesis and code analysis to enable the
assistant to comprehend and reason about
code.

Integrate the assistant within popular devel-
opment environments to provide real-time
code suggestions, debugging assistance, and
contextual documentation.

Implement a retrieval-based or genera-
tive-based approach, depending on the
nature of the questions and available
resources.

Apply NLP techniques to preprocess and
tokenize code snippets, enabling the model to
understand code structure and semantics.

Utilize techniques such as abstract syntax
trees (ASTs) and type inference to capture
code semantics and enable code compre-
hension.

Employ symbolic execution to analyze code
paths, identify potential bugs, and provide
relevant suggestions for improvement.

Use program synthesis techniques to
automatically generate code snippets or
refactor existing code based on user require-
ments.

Stack Overflow Assistant

Goal
Develop an AI tool that can
navigate Stack Overflow's knowl-
edge base and provide relevant
solutions to user queries. The tool
should effectively retrieve and
present answers from Stack Over-
flow to assist users in finding
solutions to their programming
problems.

Tech Stack

Data
Utilize Stack Overflow's publicly
available data, including question
and answer content, tags, user
profiles, and voting data.

Preprocess and clean the data,
removing irrelevant or duplicate
content while preserving the contex-
tual information.

Programming Languages: Python
for model development and
training

Deep Learning Frameworks:
TensorFlow or PyTorch for building
and training the chatbot model.

Web Development: HTML, CSS,
and JavaScript for creating a
user-friendly chatbot interface.

Deployment: Docker containers
and cloud platforms like AWS or
Google Cloud for hosting the
chatbot.

Insights
Analyze user interactions and
feedback to understand common
programming challenges and improve
the relevance of retrieved answers.

Monitor user satisfaction with the
provided solutions to identify areas for
improvement.

Track the effectiveness of the tool in
reducing the time and effort required
for users to find solutions on Stack
Overflow.

Success Metrics

Accuracy: Measure the tool's ability to provide relevant and accurate solutions to
user queries.

Relevance: Evaluate the relevance of the retrieved answers based on user
feedback and ratings.

User Satisfaction: Assess user feedback to determine satisfaction levels with the
tool's performance and solutions provided.

Time Saved: Measure the time saved by users in finding solutions compared to
manual search on Stack Overflow.

Effectiveness: Evaluate the tool's effectiveness in improving productivity and
reducing the effort required to find solutions.

Approach
• Natural Language Processing

• Information Retrieval

• Semantic Matching

• Question Classification

• Intent Recognition

Design and implement a search system that
leverages natural language processing and
information retrieval techniques to match
user queries with relevant content from Stack
Overflow.

Apply NLP techniques for query
preprocessing, tokenization, and entity
recognition.

Utilize techniques such as TF-IDF, BM25, or
word embeddings for efficient retrieval of
relevant content from Stack Overflow's
knowledge base.

Employ deep learning-based models or
transformer models for improved semantic
understanding and matching of user queries
with relevant answers.

Implement models or techniques to
categorize user queries into relevant
programming topics or domains.

Utilize techniques to determine the intent
behind user queries, enabling more accurate
retrieval of relevant content.

Mental Health Slack Bot

Goal
Develop an AI bot for Slack that
can recognize signs of mental
health issues in text conversations
and provide appropriate resourc-
es, coping strategies, and support-
ive messages. The bot should aim
to assist users in managing their
mental health and provide valuable
support.

Tech Stack

Data
Collect a diverse dataset of text
conversations that include discus-
sions related to mental health.

Annotate the dataset with labels
indicating the presence of mental
health issues, emotions, and relevant
resources or coping strategies.

Ensure the dataset is properly
anonymized and follow strict privacy
protocols to protect user informa-
tion.

Programming Languages: Python
for model development and
integration with slack

Deep Learning Frameworks:
TensorFlow or PyTorch for building
and training the AI models.

NLP Libraries: NLTK (Natural
Language Toolkit), spaCy, or
Hugging Face's Transformers for
NLP preprocessing and analysis.

Slack API: Utilize Slack's API to
integrate the AI bot within the
platform and enable real-time
analysis of text conversations.

Deployment: Docker containers
and cloud platforms like AWS or
Google Cloud for hosting and
deploying the AI bot.

Insights
Monitor and analyze user interactions
and feedback to identify areas for
improvement and assess the bot's
effectiveness in providing support.

Collaborate with mental health profes-
sionals to gain insights and guidance in
developing appropriate responses and
coping strategies.

Continuously update the bot's knowl-
edge base with the latest mental health
resources and best practices.

Success Metrics
Accuracy: Measure the bot's ability to accurately identify signs of mental health
issues and emotions in text conversations.

Resource Effectiveness: Evaluate the relevance and usefulness of the provided
mental health resources and coping strategies.

User Satisfaction: Assess user feedback and ratings to determine satisfaction
levels with the bot's support and responses.

Impact: Track the bot's impact on users' well-being, such as increased awareness,
improved coping skills, or seeking further professional help.

Privacy and Ethics: Ensure strict adherence to privacy protocols and ethical
considerations to protect user data and maintain confidentiality.

Approach
• Natural Language Processing

• Sentiment Analysis

• Emotion Detection

• Topic Modeling

• Contextual Understanding

Design and train a deep learning model using
techniques like sentiment analysis, emotion
detection, and topic modeling to understand
the mental health context of text conversa-
tions.

Employ transfer learning approaches by
utilizing pre-trained language models like
GPT-3.5 to bootstrap the bot's understand-
ing of mental health-related language.

Integrate the AI model within the Slack
platform to allow real-time analysis of text
conversations and provide appropriate
responses.

Utilize NLP techniques to preprocess and
tokenize text conversations, including
sentiment analysis, emotion detection, and
named entity recognition.

Determine the overall sentiment of text
conversations to identify signs of distress or
negative emotions.

Recognize and classify emotions expressed in
text conversations to gauge the user's
emotional state.

Identify key topics or issues related to mental
health in text conversations to provide
targeted resources and coping strategies.

Utilize techniques like deep learning and
transformer models to capture the context
and nuances of mental health discussions.

Case Studies
Business Cases Repository
Team Epic utilizes open access business case repositories to drive knowledge sharing and innovation.
We curate a wide range of real-world business case studies, enabling learners to access practical insights
and enhance critical thinking skills. With a user-friendly platform, Team Epic promotes active learning and
problem-solving.

Course Title

Acadia Institute of Case Studies 10

25

10

15

20

Case Centre

NP Certified UI/UX Expert

Ethics Wnrapped

Insead Publishing

5

25

20

10

Ivey Business Schools

Journal of Business Cases & Applications

Stanford Graduate School of Business Cases

UBC Open Cases

15

30

Yale School of Management

Corporate Case Sites

No of Case Studies

Data Academy
www.teamepic.in

