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Convective flows coupled with solidification or melting in water
bodies play a major role in shaping geophysical landscapes. Par-
ticularly in relation to the global climate warming scenario, it
is essential to be able to accurately quantify how water-body
environments dynamically interplay with ice formation or melt-
ing process. Previous studies have revealed the complex nature of
the icing process, but have often ignored one of the most remark-
able particularities of water, its density anomaly, and the induced
stratification layers interacting and coupling in a complex way in
the presence of turbulence. By combining experiments, numerical
simulations, and theoretical modeling, we investigate solidifica-
tion of freshwater, properly considering phase transition, water
density anomaly, and real physical properties of ice and water
phases, which we show to be essential for correctly predicting the
different qualitative and quantitative behaviors. We identify, with
increasing thermal driving, four distinct flow-dynamics regimes,
where different levels of coupling among ice front and stably and
unstably stratified water layers occur. Despite the complex inter-
action between the ice front and fluid motions, remarkably, the
average ice thickness and growth rate can be well captured with
the theoretical model. It is revealed that the thermal driving has
major effects on the temporal evolution of the global icing pro-
cess, which can vary from a few days to a few hours in the current
parameter regime. Our model can be applied to general situa-
tions where the icing dynamics occur under different thermal and
geometrical conditions.

Rayleigh–Bénard convection | solidification | density anomaly |
hydrodynamic turbulence | ice dynamics

Many geophysical patterns result from the interaction
between fluid motions and the dynamical evolution of

solid-phase boundaries. Usually, the dynamics of the solid
boundaries are due to phase change or erosion. Examples range
from sculpturing of the glacier, ice shelf, iceberg, and sea caves
due to flows in the oceans to congelation ice forming in ponds
and lakes and many geological patterns (1) and astrophysical
landforms (2), as well as in our daily lives and many industrial
processes (3, 4).

Generally, warm water (freshwater or water with low enough
salinity) is lighter and so it floats, whereas cold water is denser
and therefore it sinks. However, this is not the case once water is
around the density-peak temperature, Tc (around 4 ◦C), when
its density reaches the maximum: Water expands when it is
colder than Tc (the nonmonotonic relationship of density with
temperature for water near Tc is reported in SI Appendix, sec-
tion C and Fig. S3). During cold weather conditions when the
lake is close to freezing, colder water (less than Tc) floats to
the top and warmer water (more than Tc) sinks. Consequently,
the coldest water, which sits on top of the lake, releases heat
under cold weather conditions and freezes to form a layer of
ice. That is why ice first forms on top of water bodies. The tem-

perature structure in shallow ice-covered lakes is characterized
by a continuous increase from 0 ◦C at the ice–water interface
up to Tc or higher at the bottom layers in the deep parts of
the lake (5). A research report on the ice-covered Karelian
lakes found that at the ice formation, a weak stable stratifica-
tion existed in the lakes with average temperatures about 1 ◦C.
When there is a strong stratification, the turbulent mixing tends
to be suppressed. While the temperature exceeds Tc convec-
tion develops and it is important for the flow dynamics in the
water beneath the ice (6). This water density anomaly results
in a complex coupling between the ice layer, the gravitation-
ally stably stratified layer of fluid (0<T ≤Tc), and the unstably
stratified layer (T >Tc, with convective instability) (7–15). The
stably stratified layer always exists in the ice–water system, but its
strength may be enhanced or depleted under different levels of
turbulence.

Connecting to the complex fluid dynamics in the water, the
evolution of the ice front and the phase change at the interface
show very rich dynamics, which recently have received increasing
attention. Rayleigh–Bénard (RB) convection, a fluid layer con-
fined between a cold top plate and a hot bottom plate (16–20),
is an ideal model system to study the aforementioned coupled
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dynamics. Various studies have been performed on the flow in
the RB system with freezing or melting boundary conditions. The
focus has been on the behaviors of global quantities such as the
heat flux, the kinetic energy, and the dynamics of the ice–water
interface morphology with a melting phase-change boundary in
the RB system (21–24); pattern selection and instability analysis
with a moving solid–water interface (25, 26); the bistability of the
equilibria induced by different initial conditions (27, 28); melting
in double diffusive convection (29–31); and the influences of dif-
ferent container shapes on the melting and convection of phase
change materials (32–34).

While most of these studies consider the interaction of phase
change with the convective motions in the fluid, yet several
crucial ingredients have not been fully taken into considera-
tion, notably the water density anomaly and the real physical
properties of the ice and water. These ingredients are crucial
to realistically capturing the growth of the ice layer and the
dynamical coupling mentioned above. For example, in geophys-
ical flows, with a typical water temperature in winter of the
range 0∼ 15 ◦C (see examples of historical Lake Erie temper-
atures from the National Weather Service) (35), it is essential
to consider the realistic natural configurations to make cor-
rect predictions, e.g., how thick the ice can form and how long
it takes to arrive at the equilibrium state for a given envi-
ronmental condition. What’s more, correctly predicting the ice
formation timescale can provide a reliable indicator of climate
change (36–39).

In this work, we combine experiments, numerical simula-
tions, and theoretical modeling to study the coupled dynamics
of freshwater solidification and the surrounding fluid dynam-
ics, properly accounting for the water density anomaly and the
real physical properties of ice and water. We aim to reveal
how the growth of freshwater ice depends on the environmental
conditions.

Results and Discussion
Experiments and Simulations. The experiments are performed in
a Rayleigh–Bénard convection system of cuboid shape (aspect
ratio Γ =Lx/H = 1, and Ly = H/4, where Lx , Ly , and H are
the system length, width, and height) heated up from the bot-
tom and cooled down from the top. Water, as the working fluid,
is deionized, ultrapured and degassed. The top plate temper-
ature, Tt, and bottom plate temperature, Tb, are imposed by
a water-circulating bath, with Tt <Tφ and Tb >Tφ (Tφ is the
water freezing point, Tφ = 0 ◦C). In such a configuration, ice
starts forming from the top plate and it grows until its saturation
thickness. During the experimental process, there is a volume
change induced by thermal expansion of water and water–ice
phase change, so an open expansion vessel is connected to the
experimental cell, allowing one to quantify the volume change,
and therefore the pressure in the system remains the atmospheric
pressure. By monitoring the water volume change inside the
expansion vessel, the evolution of the spatial average ice thick-
ness can also be calculated (details are shown in SI Appendix,
sections A and B and Figs. S1 and S2). In addition to the exper-
iments, the numerical simulations are carried out using lattice-
Boltzmann method (LBM) numerical code (22, 40, 41). In the
simulations, we consider the density anomaly, the source term
from the latent heat at the ice front (42), and the correction for
the governing equations when the investigated domain consists
of heterogeneous media, i.e., ice and water phases with differ-
ent thermal conductivities (SI Appendix, section E) (43). Two-
dimensional (Γ =Lx/H = 1) and three-dimensional simulations
are conducted (Γ =Lx/H = 1,Ly =H /4, same as the experi-
mental cell, with Ly being the system width), and the boundary
conditions are no-slip for the velocity, adiabatic at the sidewalls,
and constant temperatures at the top and bottom plates. The ini-
tial condition is still fluid at uniform temperature, Tb. We assume

thermophysical properties to be constant except for the density
in the buoyancy term. The real water density property near Tc is
well described with the equation ρ= ρ0(1−α∗|T −Tc|q), where
α∗ is not the usual thermal expansion coefficient but has units
of K−q with q = 1.895 and α∗= 9.30× 10−6(K−q). This equa-
tion gives the maximum density of water ρ0 = 999.972 kg/m3 at
T =Tc (44) (SI Appendix, section C and Fig. S3).

One important control parameter of the system is the Rayleigh
number, Rae, which is the dimensionless thermal forcing, and its
definition formula is explained below (more details are shown
in SI Appendix, section D). Another important control param-
eter is the Stefan number which relates the sensible heat to
the latent heat, Ste =L/Cpi(Tφ−Tt), with Cpi being the iso-
baric heat capacity of ice and L the latent heat of solidification.
To make sure that the fluid dynamics of the water region are
the only influencing factor for the ice evolution, the top tem-
perature, Tt (correspondingly also the Stefan number), both in
experiments and simulations is fixed at a typical value for win-
ter, which we select as Tt =−10 ◦C and thus the Stefan number
Ste ≈ 20. The bottom plate temperature, Tb (connected to
Rayleigh number to be explained below), is varied in a wide
parameter regime, i.e., in experiments 3.8 ◦C≤Tb ≤ 8 ◦C and
in simulations 0.5 ◦C≤Tb ≤ 15 ◦C (typical water temperature
in winter). We employ laboratory experiments to ensure that
the simulations capture all relevant aspects of the physics. The
results from the experiments act as the validation for the results
from the simulations. On the other hand, simulations can provide
more detailed information about the investigated system, and
also it is easier to change the values of the control parameters in
numerical simulations rather than those of the experiments in the
laboratory. So we conduct numerical simulations in a wider and
more systematic parameter range than that of the experiments.

An important response to the imposed Rae and Ste is the
overall heat flux transported vertically from bottom to top. The
dimensionless heat flux is Nusselt number, Nu (more details are
shown in SI Appendix, section D).

The Final Average Ice Position. We first compare the final average
ice position, h0, which depends on the bottom plate temperature
from the experiments, the two-dimensional (2D) and three-
dimensional (3D) simulations, and from the theoretical model
(the details of the model are discussed later; recall that we use a
fixed top temperature (Tt =−10 ◦C) as a typical example; never-
theless, it should be noted that in real natural situations, h0 may
also be influenced by other factors) (Results and Discussion).

Fig. 1A is a photograph of the experimental domain at Tb≈
8 ◦C when the system has reached the statistical equilibrium
state. With the same operating conditions, the visualization from
the 3D simulation of the ice position and the temperature field
in the fluid phase at the statistical equilibrium state is shown
in Fig. 1B. As shown in Fig. 1 A and B, the ice–water interface
and its position is similar in the experiment and the numerical
simulation in the same condition. Varying bottom plate temper-
ature, Tb, in a large temperature range, the spatially averaged
ice position at the equilibrium state as a function of Tb is shown
in Fig. 1C. Depending on Tb, the system may end up in a dif-
fusive state (refer to the green shaded area in Fig. 1C) or in a
convective state. There is good agreement on the height of the
spatially averaged ice–water interface among the experiments
and the 2D and 3D simulations as well as the theoretical model
with considering the water density anomaly (see Fig. 1C, in
which E, S, and M stand for experiment, simulation, and model,
respectively). However, it is noteworthy that when neglecting
the water density anomaly, the prediction of ice position from
the model (violet line and green dashed line in Fig. 1C) devi-
ates dramatically from the real value. The violet line is under
the assumption that the thermal expansion coefficient, α, is a
fixed value, which is evaluated at the mean temperature of the
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Fig. 1. (A) Picture of the experimental domain. The system is heated up at the bottom (above the water freezing point Tφ = 0 ◦C) and cooled down from
the top (below Tφ). To focus on how the fluid dynamics of the water region influence the process of ice formation, the top temperature, Tt, is fixed both
in experiments and simulations at a typical value in the winter (which is chosen to be Tt =−10 ◦C). The case shown in A is at the statistical equilibrium
state with Tb≈ 8 ◦C (to give an impression of the approximate timescale of reaching an equilibrium state, it takes a few hours to a few days in the highly
convective state and purely conductive state (Tb < Tc)), where “I” stands for ice and “W” for water. (B) Visualization of the temperature field across the
numerical domain at the statistical equilibrium state (3D simulation for Tb = 8 ◦C and Tt =−10 ◦C). The blue-colored domain is in the ice region. The
ice–water interface is drawn in dark blue. (C) The comparison of spatial-average ice–water interface from the experiments (triangles) and the 2D (circles)
and 3D (stars) simulations, as well as the theoretical model (in the key, E, 2D-S, 3D-S, M for water, and M (neglecting ρw anomaly) stand for experiments, 2D
simulation, 3D simulation, model for water, and model for water without considering the water density anomaly, respectively; blue line, with considering
water density anomaly at Tc; violet line, without considering water density anomaly at Tc), and the thermal expansion coefficient α is evaluated at the
mean temperature of the investigated range of Tb (∼ 7 ◦C); green dashed line, without considering water density anomaly at Tc, and the thermal expansion
coefficient α is a function of temperature, which is evaluated at the mean temperature Tmean of the water region for each bottom plate temperature Tb,
which is Tmean = (Tb + Tφ)/2. The green-shaded area shows the temperature range corresponding to the diffusive regime of the system. Tbcr is the critical
bottom plate temperature (Tbcr≈ 5.1 ◦C, depending on the model results) above which the system ends up in a convective state. The error bars for the
experiments (inside the triangles and comparable to the symbol size) come from the measurement errors (more details are reported in SI Appendix, section
B). The error bars for the simulations (inside the circles) are smaller than the symbol size represent the maximum level of difference between the 2D and 3D
simulations.

investigated range of Tb (∼ 7 ◦C). One may argue that α itself
can change with the temperature; then we show the green dashed
line, and here α is evaluated at the mean temperature Tmean of
the water region for each bottom plate temperature Tb, which
is Tmean = (Tb +Tφ)/2. Nevertheless, the trend from the model
without considering the water density anomaly (the violet line
and green dashed line in Fig. 1C) is very different from the real
situation (the blue line in Fig. 1C). The key reason is that the
stably stratified layer (with temperature ranging from Tφ to Tc),
which results from the density anomaly of water, is crucial for the
dynamics of the system. The results from the experiments and 2D
and 3D simulations agree well with each other, which indicates
the simulations are reliable, and therefore in the following we
explore the complex nature of the coupled dynamics mostly via
2D simulations as these allow us to more efficiently scrutinize the
phenomena in a wide range of parameters.

The Coupled Dynamics of the Ice Growth with the Fluid Motion. To
investigate the physical mechanism, we highlight four distinct
regimes based on the phenomenology of the equilibrium state
as the bottom plate temperature increases from below to above
Tc (Fig. 2 A–D). The four regimes that will be considered are
as follows, where the first two letters of the acronyms specify
the feature of stratification, which can be either stably strati-
fied (SS) or unstably stratified (US), and the third letter of the
acronyms specifies the mode of heat transport (and fluid motion)
which can be either diffusion (D) or convection (C): 1) regime
1, SSD with flat ice (Tb≤Tc); 2) regime 2, SSD + USD with
flat ice (Tc <Tb≤ 5.1 ◦C); 3) regime 3, SSD + USC with flat
ice (5.1 ◦C<Tb≤ 6.9 ◦C); and 4) regime 4, SSD + USC with
deformed ice front (Tb > 6.9 ◦C).

The boundaries between different regimes depend on the bot-
tom plate temperature (here, around the threshold between each
regime, we did simulations with 0.1-K increments to better iden-
tify the transition values). Fig. 2 A–D shows typical cases from all
four regimes from the simulations. Next, we discuss the details of
the four regimes.
Regime-1 (Tb ≤ Tc). Fig. 2A shows a typical case in this regime.
The system is in a stably stratified state with purely diffusive heat
transfer all of the way from the beginning (Fig. 2 A, I) until the

end (Fig. 2 A, II); the corresponding sketch, which shows differ-
ent layers at the statistical equilibrium state in the system, can be
seen in Fig. 2 A, III. The ice–water interface is always flat, indi-
cating that the instantaneous 0 ◦C isotherm overlaps with the
average position of the ice front, h0. The temperature profiles
are linearly dependent on the height in both the ice and water
phases, with the different slopes corresponding to the different
thermal conductivity in ice and water (Fig. 2 A, IV ).
Regime-2 (Tc < Tb ≤ 5.1 ◦C). Raising the bottom plate tempera-
ture into this regime, the gravitationally unstably stratified layer
(from the level of the bottom plate to the spatially averaged level
of Tc denoted as h4, namely the horizontally average tempera-
ture is Tc at z = h4, with the temperature ranging from Tc to Tb)
emerges beneath the gravitationally stably stratified layer (from
the level of h4 to h0 with the temperature ranging from Tφ to
Tc; yellow shaded area in Fig. 2 B, III). When Tb >Tc, to know
beforehand whether the heat transfer regime is diffusive or con-
vective during the transient state and the statistical equilibrium
state, we define the effective Rayleigh number, Rae, based on
the thickness of the water region from the bottom plate to the
spatially average level of Tc and the corresponding temperature
difference, which reads (28)

Rae =
(∆ρ/ρ0)g(h4)

3

νκ
=

gα∗(Tb−Tc)
q(h4)

3

νκ
, [1]

with g being the gravitational acceleration, ν the kinematic vis-
cosity, and κ the thermal diffusivity. Due to the initial conditions,
the system starts from convection in the gravitationally unsta-
bly stratified layer, with the Tc isotherm deformed (Fig. 2 B, I),
where Rae∼ 108�Racr≈ 1,708 (Racr is estimated by the linear
instability analysis, which has been intensively validated in the
references) (45–47). As the ice grows, the effective height, h4,
shrinks and Rae consequently decreases. And thus the system
ends up at a diffusive state in the entire water layer (SSD +
USD) with effective Rayleigh number in US layer Rae∼ 10
smaller than Racr. This also explains why the Tc isotherm
becomes flat in the end (Fig. 2 B, II), and the correspond-
ing sketch is shown in Fig. 2 B, III. The entire system is in a
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Fig. 2. The phenomenology of temporal dynamics and the feature at the statistical equilibrium states in the four regimes. Typical case visualizations from
regimes 1 to 4: (A) Tb = 3.8 ◦C, (B) Tb = 4.75 ◦C (Movie S1), (C) Tb = 5.5 ◦C (Movie S2), and (D) Tb = 10 ◦C (Movie S3). Shown are different time instances
of temperature field for four typical regimes of the simulations (A–D, I and II). The sketches in A–D, III depict the coupled different layers of the system at
the statistical equilibrium state in regimes 1 to 4, respectively, in which the interfaces (horizontal lines) between neighboring layers (different color shaded
areas) are space-averaged values. The dashed black line is for h0 (the final average ice position); dotted blue line is for h4 (the final average Tc isotherm);
thick black curved lines are for instantaneous 0 ◦C and Tc isotherms, respectively; and dashed-dotted lines are for the upper bound h+

4 and lower bound h−
4

of instantaneous Tc isotherms. In A–D, IV the temporal and space-averaged temperature profiles at the statistical equilibrium state corresponding to the
four typical cases are shown. In A–D, III and IV the blue-shaded, yellow-shaded, and orange-shaded areas denote ice (ICE), stably stratified layer (SS), and
unstably stratified layer (US), respectively. To make the flow structures more visible, two approaches are applied: 1) Two color bars for the temperature field
corresponding to ice region (TI(x, z)) and water region (Tw(x, z)) are shown on the right of D, I and II; 2) A, I, C, I and II, and D, I and II show more isotherms
(thin black lines) except for 0 ◦C and Tc isotherms (thick black lines), which are designed to make the hot and cold plumes more noticeable.

diffusive state with a linear temperature profile (Fig. 2 B, IV )
similar to that in regime 1.
Regime 3 (5.1 ◦C < Tb ≤ 6.9 ◦C). As Tb is in regime 3, with tem-
perature ranging from 5.1 ◦C to 6.9 ◦C, there are rich fluid
dynamics in the fluid layer below the ice. The system ends up
in the convective state with Rae∼ 105 (Fig. 2 C, II). We can
see hot plumes form at the bottom plate. During the lifetime
of hot plumes, they detach from the bottom plate shortly after
being generated; the plumes accumulate and become coherent
plumes, which rise through the bulk region while experiencing
heat exchange with the fluid around; if in a classical Rayleigh–
Bénard system, they would later on go through the cold boundary
layer below the flat Tc isotherm where they give out most of the
energy and slow down to stop; however, in the stably and unsta-
bly stratified coupled system presented here, bunches of plumes

can impact on and deform the Tc isotherm because of turbu-
lent bursts. The Tc isotherm is no longer flat but develops some
spatial variations (thick black line in Fig. 2 C, II). The region
from the spatially average height, h4, of the instantaneous Tc
isotherm to its upper bound, h+

4 , belongs to the gravitationally
stably stratified layer but there are also some warmer patches
of fluid with the temperature larger than Tc from the unstably
stratified layer. Due to mass conservation, the same amount of
fluid, with a temperature smaller than Tc coming from the grav-
itationally unstably stratified layer, goes downward below the
level of h4 (see the downward cold plumes in the region from
the lower bound of the instantaneous Tc isotherm h−4 to h4 in
Fig. 2 C, III; the flow is convection dominated in that the esti-
mated Peclet number in the current regime is of order 102∼
103� 1; the Peclet number denotes the relative importance of
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convection with respect to diffusion and is defined as Pe =LU /κ
(48), where U is the characteristic velocity which is taken as
the free-fall velocity scale with corrections U = 0.2 ν

√
RaPr
h4

for
buoyancy driven convection (49), and L is the characteristic
length scale of the flow which is based on the unstably strati-
fied layer, i.e., L is the thickness of the unstably stratified layer,
L= h4). In other words, due to the nonmonotonical behavior of
water with respect to the temperature, on average there is a sta-
bly stratified layer with diffusive heat transfer (SSD, from the
level of h4 to that of h0) and unstably stratified layer with con-
vective heat transport (USC, from the level of the bottom plate
to that of h4); however, instantaneously because of the penetra-
tion, there is a strong fluid exchange between SSD and USC as
indicated by the deformation of the instantaneous Tc isotherm.
Because of the shield of SSD where there is still a horizontal
layer with fluid temperature purely smaller than Tc (from h+

4 to
h0), the ice–water interface is still flat in regime 3. In this regime,
the temperature profile in the entire water layer is not linear
(Fig. 2 C, IV ). In the entrainment layer (from the level of h−4 to
the level of h+

4 ) and underneath USC, the temperature profile
reflects the turbulence-induced mixing: There is a hot ther-
mal boundary layer attached to the bottom plate, a well-mixed
bulk region of nearly uniform temperature, and a cold thermal
boundary layer.
Regime 4 (Tb > 6.9 ◦C). Upon further increasing Tb to above
6.9 ◦C, the level of the upper bound of the instantaneous Tc
isotherm, h+

4 , is even higher than the spatially averaged level of
ice position h0, which indicates strong thinning of the thermal
boundary layer by the plumes. On the plume-impact region, ice
melts and forms a concave interface due to extra heat input. We
can see that there is no horizontally stably stratified layer with
fluid temperature purely smaller than Tc which can shield the
ice front from the turbulent convective motion. The Tc-isotherm
line is not in a well-defined position; instead, it displays intensive
spatial fluctuations due to strong turbulent plumes, resulting in
local melting or freezing of the ice front. The water layer con-
sists of a very wide range of USC at the equilibrium state (Fig. 2
D, II). The temperature profile is similar to that in regime 3 but
with a much thicker water layer thickness and a much thinner ice
layer. The asymmetrical feature of the thermal boundary layers
in the water does not occur in the classical Rayleigh–Bénard con-
vection, but it has also been found in ref. 15, in which they inves-
tigated the penetrative convection based on the Prandtl number
Pr = 1 which is different from the value we used (∼10). In their
work, the reported asymmetrical feature of the thermal boundary
layers (figures 9–11 in ref. 15) is similar to that found in regime
3 (Fig. 2 C, IV ) and regime 4 (Fig. 2 D, IV ) of the current study,
when the system has the coexistence of the stably and unstably
stratified layers.

In summary, we can see that the heat transfer regimes of diffu-
sion and convection can be even switched dynamically during the
evolving process due to the fact that the USC thickness is chang-
ing, so the system may end up in a diffusive or convective state
depending on the final effective Rayleigh number Rae (which
varies with Tb). The statistical equilibrium state depends on the
bottom plate temperature, Tb . Next, we assess the detailed ice
dynamics in a more quantitative perspective.

The flow is highly dynamic in regimes 3 and 4, and the intri-
cate nature of the intensive interaction among the ice front,
the entrainment layer, and the unstably stratified layer leads
to high fluctuations of Tc and Tφ isotherm varying in a range
(gray-shaded area and red-shaded area in Fig. 3). Nevertheless,
the global responses of the system, i.e., the horizontal-spatial-
average thicknesses of the ice–water interface, h0 (where the
horizontally average temperature is 0 ◦C), and h4 (where the
horizontally average temperature is Tc), match up well to
the one-dimensional model for water (discussed below) except

Fig. 3. The complex phenomenology emerging from the tight interplay
among ice front, stably stratified layer, and unstably stratified layer: com-
parison of the theoretical model (black thick line for h0, red thick line for
h4) and the simulations featuring the real nature of fluctuations, with cir-
cles being the average values (black circles for h0, red circles for h4), and
gray-shaded area and red-shaded area indicating the spatial fluctuation of
instantaneous ice–water interface and Tc isotherm. The blue-shaded area
indicates regime 1 (R-1), the green-shaded area regime 2 (R-2), the yellow-
shaded area regime 3 (R-3), and the remaining area regime 4 (R-4). In regime
4 where Tb (i.e., Rae) is high, the predictions for h4 deviate a bit from the
theoretical model due to the intensive interaction among different layers.

for some deviations in regimes 3 and 4. The ice–water interface
and the Tc isotherm attach to and adjust to each other, which
results in a self-organizing large-scale circulation, and the overall
effects shape the ice front as shown in Fig. 2 D, II.

Theoretical Model. The ice thickness can be properly predicted
by taking into account the water density anomaly and the known
scaling properties of turbulent thermal convection (namely the
Nusselt number–Rayleigh number relation) (18). Next, we intro-
duce the theoretical model and we consider two situations: 1) for
statistical equilibrium states and 2) for the time-dependent tran-
sient states. Here, we assume one-dimensional geometry and all
of the notations are consistent with those in Fig. 2 A–D, III (more
details about the theoretical model are reported in SI Appendix,
section D).
1) Theoretical model for water: statistical equilibrium state.
When the system has reached the statistical equilibrium state,
there is an energy balance between the heat flux through the ice
layer and that through the water layer. When Tb >Tc, the water
layer consists of a stably stratified layer (from Tφ to Tc) and an
unstably stratified layer (from Tc to Tb). Based on the heat flux
balance, the average thicknesses of the ice layer (H − h0), stably
stratified layer (h0− h4), and unstably stratified layer (h4, exists
when Tb >Tc) at the equilibrium states can be evaluated.

In the temperature range Tb ≤ Tc. The system is in a diffu-
sive state and independent of the water layer thickness, the total
water layer is stably stratified. According to the conservation of
heat flux, we can obtain

kI
Tφ−Tt

H − h0
= kw

Tb −Tφ
h0

, [2]

where kI and kw are the thermal conductivity of ice and water,
respectively. Recall that Tφ = 0 ◦C, from which we obtain the
results on the thicknesses as follows:
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H − h0 =

−kITt

kwTb − kITt
H ,

h0 =
kwTb

kwTb − kITt
H .

[3]

In the temperature range Tb > Tc. We assume that the inter-
faces of the ice front and that between the stably stratified and
the unstably stratified layers are both flat, based on the heat
flux balance between the gravitationally unstably stratified layer
(from the level of the bottom plate to the spatially average level
of Tc denoted as h4, namely the horizontally average tempera-
ture is Tc at z = h4, with the temperature ranging from Tc to Tb)
and the gravitationally stably stratified layer (from the level of h4
to h0, with the temperature ranging from Tφ to Tc),

kI
Tφ−Tt

H − h0
= kw

Tc−Tφ
h0− h4

,

kI
Tφ−Tt

H − h0
= Nukw

Tb−Tc

h4
.

[4]

The model for the heat flux in the unstably stratified layer is
in the form of Nusselt number as a function of Rayleigh num-
ber (Nusselt number is the dimensionless heat flux defined as
Nu = ∂zT |z=0

(Tc−Tb)/h4
). The Rayleigh number dependence of Nu can

be obtained from the simulations and is consistent with that of
the classical Rayleigh–Bénard in the same parameter regime (18,
50), suggesting that the model we build is of a general form (more
details are reported in SI Appendix, section D).

By this statistical equilibrium-state model, the final ice posi-
tion, as a function of Tb (Figs. 1C and 3), and the Tc isotherm
position, as a function of Tb, can be calculated, which show a
good agreement with the results from experiments as well as
simulations.
2) Theoretical model for water: transient state. Following the
analytical methods for the classical Stefan problem (51), since
the time-dependent evolving interface between ice and water
(denoted as z = h0(t), where h0(t) is the height at which
Tw(h0(t), t) =Tφ) is a priori unknown, a part of the solution
will be to determine the boundary. As the phase transition
occurs, there will be volume change due to the density difference
between water and ice as well as the thermal expansion effect. To
simplify the problem, here we ignore this volume variation. Fur-
ther, we consider the one-dimensional heat transfer problem and
assume that the physical properties are invariant with tempera-
ture while their values are different for the ice and water phase;
the ice–water interface is fixed at phase change temperature Tφ
(recall Tφ = 0 ◦C).

When Tb ≤Tc, the basic control equations are

∂TI(z , t)

∂t
=αI

∂2TI(z , t)

∂z 2
, 0< z < h0(t), [5]

∂Tw(z , t)

∂t
=αw

∂2Tw(z , t)

∂z 2
, h0(t)< z <H , [6]

where α is the thermal diffusivity, and the subscripts “I” and
“w” denote ice and water phase, respectively. The boundary
conditions read

Tw(0, t) =Tb,

lim
z→h0(t)

−
Tw(z , t) = lim

z→h0(t)
+
TI(z , t) =Tφ,

TI(H , t) =Tt,

[7]

where the superscripts “+” and “−” indicate the direction when
taking the limit, namely from smaller than h0(t) toward h0(t)

and from larger than h0(t) toward h0(t), respectively. The energy
balance at the ice–water interface is

LρI
dh0(t)

dt
= kI

∂TI(z , t)

∂z
|z=h0(t)

+ − kw
∂Tw(z , t)

∂z
|z=h0(t)− . [8]

From Eqs. 5–8, we obtain the solutions for temperature
distributions in the ice and water,

Tw(z , t) =Tb−
Tb

erfc(λw)
erfc

(
Z

2
√
αwt

)
,

TI(z , t) =Tt−
Tt

erf (λI)
erf

(
Z

2
√
αIt

)
,

[9]

where Z =H − z , erf is the error function (erfc(x )) = 1−
erf (x )), and

λw =
H − h0(t)

2
√
αwt

, λI =
H − h0(t)

2
√
αIt

. [10]

When Tb >Tc, the effective Rayleigh number can be calculated
and the interface energy balance takes the form

LρI
dh0(t)

dt
= kI

∂TI(h0(t)
+, t)

∂z
+ Nu kw

Tb −Tφ
h0(t)

. [11]

Based on Eqs. 5 and 11 with boundary conditions Eq. 7, the posi-
tion of the ice–water interface as a function of time can be solved,
and therefore we can predict the temporal evolution of the global
icing process (Fig. 4B) (more details are reported in SI Appendix,
section D).

Growth Dynamics of the Ice Layer. The coupled interactions
between the stably and the unstably stratified layers play a major
role in determining the final saturation thickness of the ice layer
and the time it takes to reach the saturation state (here we define
the saturation time, t∗, as the time when the ice thickness reaches
90% of the final statistical equilibrium state thickness). At early
stages of the evolution, the conductive heat transfer within the
ice layer dominates versus the convective heat transfer within
the liquid; because the ice layer is thin where the temperature
gradient is large, correspondingly, the conductive heat flux is
large. This conduction-dominated early evolution stage yields
leading-order behavior of the ice thickness with (H − h0)/H ∝
t0.5 at early times even with convective heat fluxes in the liquid
(Fig. 4A). The ice growth deviates from the early leading-order
behavior due to the convective flows in the water layer. The sat-
uration time t∗ versus the bottom plate temperature is shown in
Fig. 4B, which clearly shows a good agreement between simula-
tions (black symbols) and experiments (orange symbols). We also
compare the experimental and numerical results with those in
the theoretical model. They show a good agreement except that
there is some deviation in regimes 2 and 3, which may be due
to the complex dynamics around the onset of convection. Fur-
ther, the coexistence of stably and unstably stratified layers leads
to the effective convective region (corresponding to the unsta-
bly stratified layer) being smaller than the entire water depth,
which may contribute to the discrepancy. Based on the investi-
gated parameter regime, it is revealed that the temperature of
the bottom surface has major effects on the icing time. To give
the reader an impression of the physical saturation timescale,
for example, when the bottom plate increases from Tb =
0.5 ◦C to Tb = 15 ◦C, the saturation time can vary from a few
days to a few hours.

Here, we use a fixed top temperature (Tt =−10 ◦C) as a typi-
cal example; nevertheless, it should be noted that in real natural
situations, the icing dynamics may also be influenced by the cool-
ing conditions, whole water layer depth, and other factors, to
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Fig. 4. Dynamics of the ice growth. (A) Time evolution of the average ice
thickness for various Tb. The parameters are Tt =−10 ◦C and 0.5 ◦C≤ Tb≤
15 ◦C. The gray arrow indicates the direction of increasing Tb. The circles
show the saturation time (when ice thickness is increasing to a value of
90% of that in the statistical equilibrium state). (B) The saturation time as
a function of Tb. The blue-shaded area specifies regime 1 (R-1), the green-
shaded area regime 2 (R-2), the yellow-shaded area regime 3 (R-3), and the
remaining area regime 4 (R-4).

which our findings are still applicable and the model is easy to
extend to general situations.

Conclusions and Outlook
By combining experiments, simulations, and theoretical model-
ing, we systematically investigated the coupled dynamics between
flow and ice growth for different levels of stratification instabil-
ity (i.e., higher Tb signifies increasingly unstably stratified). We
revealed that the dynamics of the ice thickness can be accurately
predicted only by properly taking into account the water den-
sity anomaly, in combination with the known Grossmann–Lohse
theory (18) scaling properties of turbulent thermal convection.
We uncovered the rich coupling dynamics among the ice–water
interface and the stably and unstably stratified layers.

Four regimes were identified depending on Tb (regimes 1 to
4), which show the different degrees of interactions with respect

to the activities in the water layer. It is noteworthy that turbulent
bursts from the convective unstably stratified layer can pene-
trate above the Tc and induce the entrainment layer in regime
3. However, as long as the ice still enjoys the protection of the
horizontally continuous stably stratified layer (where the heat
transfers diffusively, SSD), the system terminates with a flat ice–
water interface, regardless of the water layer ending up in a
convection (regime 3) or a conduction state (regimes 1 and 2).
Higher thermal intensity (namely high Tb) leads to the deforma-
tion of the ice (Fig. 2 D, II), which indicates that some spots of
the ice block could become thin and vulnerable, and in the case of
river or lake ice, these spots may act as an initial breakout point.
This information is of great importance in deicing and dredging
waterways to provide a more convenient, effective, and smooth
freight transportation system in winter. Further, we showed that,
up to a moderate level of turbulence (regimes 1 to 3), the spa-
tially and temporally averaged ice thickness at the equilibrium
state can be well predicted by the theoretical model, suggesting
robust predictability of the model with the consideration of the
density anomaly.

We found that the ice grows diffusively until the system slowly
arrives at the energy balance state and the saturation time can
be also well predicted by the theoretical model. Within the
investigated parameter regime, the equilibrium time for the
ice growth decreases from a few days to a few hours upon
increasing Tb, suggesting different environments can tune the
final state and its icing time. It is noteworthy that our find-
ings can be extended to general situations, such as different
environment temperatures and different system sizes, among
others.

By modifying the thermal condition of the system, the cou-
pling of stably and unstably stratified layers holds promise for
regulating local mixing in devices (devoid of moving parts)
with respect to contemporary clinical, pharmaceutical, and
chemical applications and is of interest for biologically active
elements.

The approach followed in this study, which is based on the
matching of controlled laboratory-scale experiments with fully
resolved direct-numerical simulations, sets a standard for future
explorations on convection coupled to phase-change problems.
We note that the current work has uncovered only a subset of the
rich possibilities of ice–water dynamics in terms of the parameter
space. In future investigations, we plan to continue by studying
the effects of container aspect ratio, ice–water interface inclina-
tion, dissolved salt, and overburden pressure, the topics of which
are of great relevance for better modeling of geophysical and
climatological large-scale processes.

Materials and Methods
Below, we provide basic information on the experiments, theoretical mod-
eling, and numerical simulations performed in this work. Further details and
additional figures are provided in SI Appendix.

Experimental Setup. The turbulent convection coupled with solidification of
freshwater experiments was performed in a classical convection setup (SI
Appendix, Fig. S1A). The experimental cell, of rectangular shape, consists of
Plexiglas sidewalls with height H = 240 mm (length Lx = 240 mm and width
Ly = 60 mm, i.e., aspect ratio Γ = Lx/H= 1.0). The working fluid is confined
in between the copper top plate (cooled by circulating bath; PolyScience
PP15R-40) and the copper bottom plate (heated by circulating bath; Poly-
Science PP15R-40). In the experiments, ice forms on the top plate and grows
in thickness until the system reaches a statistical equilibrium state. During
the phase-change process, there is a volume change. To release the pres-
sure due to volume change induced by phase change, an expansion vessel
is connected to the experimental cell through a tube. The expansion ves-
sel is open to the atmosphere so that the pressure of the experimental cell
is kept constant. To avoid evaporation of the water in the expansion ves-
sel, we use a thin layer of silicone oil (immiscible with water) to seal the
water surface. By monitoring the water level inside the expansion vessel,
the spatial average ice position, h0 (i.e., the ice thickness is H− h0), can be
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calculated for each bottom plate temperature, Tb (SI Appendix, section B).
Six resistance thermistors (44000 series thermistor element; SI Appendix,
Fig. S1C) are embedded into the top and bottom plates, respectively. To
control the temperature of the setup and to avoid the heat exchange
between the experimental cell and the environment, there are two kinds
of techniques applied: 1) The experimental cell is wrapped in a sandwich
structure of insulation foam, aluminum plate, and insulation foam and 2)
a proportional-integral-derivative (PID) controller (SI Appendix, Fig. S1B) is
installed to the setup (more details are reported in SI Appendix, sections
A and B). The working fluid is deionized and ultrapure water. Before the
experiments, water is boiled twice to degas. Since water density inverses
at temperature Tc, here we use the nonmonotonic relationship of density
with temperature for water near Tc and details are reported in SI Appendix,
section C.

Theoretical Model. The theoretical modeling takes into account the water
density anomaly and assumes a one-dimensional system. It provides predic-
tions for the two following conditions: 1) for statistical equilibrium states
and 2) for the time-dependent transient states. We also perform theoretical
modeling without considering water density anomaly and prove that in this

case the ice position cannot be predicted properly. More details about the
theoretical model are reported in SI Appendix, section D.

Numerical Simulations. We use the LBM which is able to capture the tur-
bulent convective dynamics in the water phase and also describe the
phase change process at the ice–water interface by means of an enthalpy
approach. SI Appendix, section E provides more details about the relevant
equations that govern phase change, fluid flow, and heat transfer solved by
the LBM algorithm.

Data Availability. All study data are included in the article and/or SI
Appendix.
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