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In this study, we investigate the coupling effects of roughness and wall shear in an
annular centrifugal Rayleigh-Bénard convection system, where two cylinders rotate with
different angular velocities. Two-dimensional direct numerical simulations are conducted
within a Rayleigh number range of 106 � Ra � 108, and the nondimensional angular
velocity difference (�), representing wall shear, varied from 0 to 1. The Prandtl number is
fixed at Pr = 4.3, the inverse Rossby number at Ro−1 = 20, and the radius ratio at η = 0.5.
The interaction between wall shear and roughness leads to distinct heat transfer behavior
in different regimes. In the buoyancy-dominant regime, an increase in the nondimensional
angular velocity difference (�) significantly enhances heat transfer. However, as � contin-
ues to rise, a sharp reduction in heat transfer is observed in the transitional regime. Beyond
a critical value of �, the flow enters a shear-dominant regime, where heat transfer remains
unchanged despite further increases in �. The underlying mechanisms behind these dis-
tinct heat transfer behaviors are then elucidated. The enhancement of heat transport in
the buoyancy-dominant regime is attributed to the introduction of external shear by the
rotating rough walls, which reinforces convection and secondary flows within the cavities.
Additionally, these secondary flows improve the efficiency of transporting the trapped
hot and cold fluids outside the cavities, further enhancing heat transfer. However, in the
transitional regime, the number of convection rolls rapidly decreases with increasing shear,
eventually reaching a point where sustaining them becomes challenging. Consequently,
a sharp reduction in heat transfer occurs. In the shear-dominant regime, heat transfer is
primarily governed by diffusion, leading to a constant heat transport rate.
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I. INTRODUCTION

Turbulent thermal convection, a highly complex fluid motion, is widespread in nature and
industrial applications. Examples include convection in oceans and the atmosphere, as well as
convective flows in heat exchangers and power plant pipes. A classical model extensively used
to study turbulent thermal convection is Rayleigh-Bénard convection (RBC) (see Refs. [1–3] for
reviews), where a fluid is confined between two horizontal plates with heating from the bottom
and cooling from the top. In Rayleigh-Bénard (RB) systems, convective heat transport is primarily
characterized by the interactions between the large-scale circulation (LSC) and thermal plumes
detached from the boundary layers (BLs) [4]. However, in many real-life scenarios, thermal con-
vection becomes significantly more complex due to external shear and roughness, both of which
influence the characteristics of the LSC and BLs. For example, in atmospheric circulation, the
presence of topographical roughness and horizontal winds plays a crucial role in the formation
of thermoconvective storms [5].

When the RB system is subjected to axial rotation, it undergoes a transition to rotating Rayleigh-
Bénard convection (RRBC), as discussed comprehensively in a review by Ecke and Shishkina [6]. In
RBC, buoyancy serves as the driving force, while in RRBC, centrifugal and Coriolis forces are also
introduced. The fundamental focus in studying thermal turbulence lies in understanding the flow
dynamics and heat transfer across a wide range of control parameters. Recently, a novel system
called annular centrifugal Rayleigh-Bénard convection (ACRBC) has been proposed for studying
Rayleigh-Bénard convection [7–12]. This system involves a configuration with cold inner and hot
outer cylinders that rotate axially, generating a robust centrifugal force. The enhanced thermal
driving force in ACRBC allows for the exploration of higher Rayleigh numbers and facilitates the
progression of thermal convection to the ultimate regime [13]. The observed thermal convection in
a rapidly rotating cylindrical annulus serves as an invaluable model for studying flows in planetary
cores and stellar interiors [14–18], further highlighting the advantages of this system.

The heat transfer and flow dynamics in ACRBC differ from those in classical RBC due to several
factors, including the different curvatures of the inner and outer cylinders and the presence of the
Coriolis force. Jiang et al. [7] mentioned that when the inverse Rossby number (Ro−1) is high,
following the constraint of the Taylor-Proudman theorem, the flow in ACRBC becomes nearly
two-dimensional without axial flow. Also, through a comparison of two and three-dimensional
simulation results, they confirmed that the aspect ratio of ACRBC has minimal impact on heat
transfer at high inverse Rossby numbers (Ro−1 � 10). This leads to a reduction in heat transport
(the Nusselt number) compared to the case with low Ro−1, which measures the influence of the
Coriolis force. Furthermore, they observed the formation of four pairs of convection rolls that rotate
in the prograde direction around the system’s center, known as "zonal flow.” In a subsequent study
[13], they demonstrated that the ultimate regime in ACRBC occurs when the Rayleigh number
Ra � 1011, which is three orders of magnitude lower than the Ra ≈ 1014 reported in classical RBC
[4,19]. Wang et al. [9] focused on investigating the effects of the radius ratio on flow dynamics,
heat transport, and temperature distribution in ACRBC. They found that the strength of the zonal
flow decreases with increasing radius ratio (η), while the heat transport efficiency increases with η.
They also observed a deviation of the bulk temperature from the arithmetic mean temperature, with
the deviation becoming more significant as η decreases. Additionally, Zhong et al. [11] examined
the influence of wall shear on heat transfer and flow dynamics in ACRBC. They found that the
introduction of shear suppresses heat transfer efficiency and that the flow transitions from turbulent
to laminar as the shear increases. Finally, Xu et al. [20] observed that the introduction of rough
walls enhances heat transport in ACRBC. This enhancement is attributed to the roughness elements
promoting the generation and detachment of plumes from the rough walls, thereby strengthening
convection in ACRBC. To date, while the individual effects of wall roughness and external shear
have been studied in ACRBC, the combined effects of both factors remain unexplored.

In this article, direct numerical simulations (DNS) of ACRBC with shear by the rough walls
are carried out to study how the combination of shear and wall roughness affects global heat

024604-2



EFFECTS OF ROUGH WALLS ON SHEARED ANNULAR …

FIG. 1. (a) Schematic view of the annular centrifugal Rayleigh-Bénard convection system and the combi-
nation of roughness. (b) Three different combinations of roughness; the height of the rough elements is 0.1L.

transport as well as local flow behavior. The paper is organized as follows: In Sec. II the numerical
settings are described. In Sec. III the relations between the Nusselt number and the shear strength at
different Rayleigh numbers are shown, and the mechanism behind the differences in heat transport
is explained. The local flow behavior is also analyzed. Finally, conclusions are drawn in Sec. IV.

II. NUMERICAL SETTINGS

A. Governing equation

The study focuses on an annular centrifugal Rayleigh-Bénard cell bounded by cold inner and hot
outer cylinders, which rotate coaxially as shown in Fig. 1(a). To show the ACRBC system more
clearly, Fig. 1(a) is illustrated in a three-dinmentional form. Here H is the height of the system
and L is the gap width. However, the study is conducted by two-dinmentional direct numerical
simulations, and the reason is explained later. The system is in a rotating frame with angular velocity
ω, and buoyancy is induced by the centrifugal force (ωr + uϕ )2/r, where r is the radius and uϕ is
the velocity of the fluid in the azimuthal direction. The motivation of the study is to investigate
the influence of the shear force caused by roughness on ACRBC. As illustrated in Fig. 1(b), three
specific combinations of rough walls are considered, each characterized by a uniform roughness
element height of δ = 0.1L. In Case A, the inner cylinder is equipped with 16 isosceles right
triangles that are evenly distributed in the azimuthal direction, while the outer cylinder features
32 triangles. In Case B, the same number of roughness elements as in Case A is maintained on
the inner cylinder, but the outer wall remains smooth. Conversely, Case C involves a smooth inner
cylinder combined with a rough outer cylinder, where the number of roughness elements matches
that of Case A.

The motion and heat transfer of the fluid under the Oberbeck-Boussinesq approximation is
governed by the nondimensional Navier-Stokes-Fourier equations in a rotating frame [11]:

∇ · u = 0, (1)

∂u
∂t

+ ∇ · (uu) = −∇p − Ro−1ez × u +
√

Pr

Ra
∇2u − θ

2(1 − η)

1 + η

(
1 + 2uϕ

Ro−1r

)2

r, (2)

∂θ

∂t
+ ∇ · (uθ ) = 1√

RaPr
∇2θ, (3)
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where u = (ur, uϕ, uz ) is the velocity vector, t is the time, p is the pressure, ez is the unit vector along
the axial direction, θ is the temperature, and η is the radius ratio. The equations are normalized
using the gap width (without roughness) L = Ro − Ri for length, the temperature difference
between the hot outer cylinder and the cold inner cylinder 	 = θhot − θcold for temperature,
the free-fall velocity U =

√
ω2((Ri + Ro)/2)α	L for velocity, and L/U for time. Here ω donates

the angular velocity of the system, and α is the coefficient of thermal expansion of the fluid.
In our system, considering both physical meaning and simplicity, we set ω = (�i + �o)/2. This
choice provides a good estimate for the free-fall velocity when the shearing is relatively small,
implying that �i − �o � ω. When the shearing becomes strong enough and dominates the flow,
the contribution of buoyancy becomes insignificant and can be neglected, as will be discussed later.
Therefore, the selected ω is reasonable in most of the parameter space. Under this rotating frame,
the inner cylinder rotates at a nondimensional angular velocity � = (�i − ω)L/U , while the outer
cylinder rotates at −�. Additionally, the choice of this nondimensional angular velocity difference
aligns with the approach taken by Zhong et al. [11], facilitating direct comparison of results with
theirs. In the coordinate system r, ϕ, z refer to the wall-normal (radial), streamwise (azimuthal)
and spanwise (axial) directions. In the following, we define the nondimensional radius R∗ to be
R∗ = (r − Ri )/(Ro − Ri ).

From the above nondimensional equations, it can be seen that there are five dimensionless control
parameters in ACRBC. The Rayleigh number (buoyancy-driven strength)

Ra = ω2(Ri + Ro)α	L3/(2νκ ), (4)

and the Prandtl number (fluid physical property)

Pr = ν/κ, (5)

as in classical RBC, where ν and κ are the kinematic viscosity and thermal diffusivity of the fluid,
respectively. Three additional control parameters are the inverse Rossby number

Ro−1 = 2ωL/U, (6)

which measures the effects of Coriolis force, the radius ratio that measures the geometric property

η = Ri/Ro, (7)

and the angular velocity difference of two cylinders

� = (�i − ω)L/U . (8)

In addition, the key response parameter is the Nusselt number measuring the efficiency of heat
transport [7,9]

Nu = J/Jcon = (〈urθ〉ϕ,z,t − κ∂r〈θ〉ϕ,z,t )/(κ	[r ln(η)]−1), (9)

where J, Jcon, ur , and θ are the total heat flux, the heat flux through pure thermal conduction, the
radial velocity and the temperature of a certain point, respectively. Here 〈·〉ϕ,z,t denotes averaging
over a cylindrical surface (averaging over the axial and azimuthal directions) with constant distance
from the axis and over time. Note that the expression of conductive heat flux in cylindrical geometry
is slightly different from that in classical RBC; the detailed derivation process can be found in our
previous study [9].

B. Direct numerical simulations

Equations (1)–(3) are solved using a second-order-accuracy, colocated finite-volume method
in the Cartesian coordinate system, using OpenFOAM as the computational platform. The rough
elements are dealt with a second-order-accuracy immersed boundary method [21,22]. Based on the
findings of Jiang et al. [7], the flow exhibits near-two-dimensionality (without axial flow) at high
inverse Rossby numbers Ro−1 (� 10), as dictated by the Taylor-Proudman theorem. Therefore, in
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FIG. 2. The instantaneous temperature fields for Case A obtained from the three-dimensional simulation at
Ra = 106, shown at (a) � = 0 and (b) � = 0.1. Panels (c) and (d) show the instantaneous temperature fields
at the middle planes of (a) and (b), respectively.

this study, two-dimensional direct numerical simulations (2D-DNS) are conducted, maintaining a
fixed inverse Rossby number of Ro−1 = 20. No-slip boundary condition is used for velocity and
constant temperature boundary condition is used for the temperature at two cylinder walls.

In order to check the reliability of the 2D simulations in ACRBC system with rough walls,
we conduct a validation of the two-dimensional model by using three-dimensional simulation for
Ra = 106 at � = 0 and � = 0.1 (representing the cases with and without shearing). As shown
in Fig. 2, the instantaneous temperature fields at each r-ϕ plane are nearly identical, regardless

(a) (b) (c)

FIG. 3. Nusselt number Nu as a function of nondimensional angular velocity difference � for (a) Case A,
(b) Case B, and (c) Case C at three different Rayleigh numbers. The dashed lines of the corresponding colors
for each Ra indicate the value of Nu at � = 0.
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of the presence of shear. This indicates that even with rough inner and outer walls, the axial
flow is significantly restricted due to the strong Coriolis force (Ro−1 = 20) in the ACRBC. This
result is consistent with the findings of Jiang et al. [7] in ACRBC and Zhong et al. [11] in
sheared ACRBC, where similar effects were observed under smooth-wall conditions within the
same Ra range (from Ra = 106 to Ra = 108) as in our study. It is important to note that with
the increase in Rayleigh number, the Coriolis force’s suppressive effect on axial flow weakens
[7]. This occurs because the stronger buoyancy-driven convection (at higher Ra) competes with
and partially overcomes the effects of the Coriolis force, leading to a more efficient axial flow in
the system. Although the dimensionality of the simulation may affect heat transport in ACRBC
as Ra increases, our comparisons show that the key features of convection, including temperature
and velocity fields, are well represented in the two-dimensional approximation for the parameters
used in our study. However, we acknowledge that while the two-dimensional model captures the
basic convection patterns, it may not fully capture the complex three-dimensional flow structures
that are essential for understanding heat transfer in sheared ACRBC at high Ra. As the interaction
between shear, rotation, and buoyancy becomes more significant for accurate heat transfer predic-
tions, future work must focus on three-dimensional simulations to more effectively capture these
interactions.

To ensure adequate resolutions, we carefully examined the spatial and temporal resolutions for
all simulations, aiming to capture all relevant scales accurately. The ratios of the maximum grid
spacing, 	g, to the Kolmogorov scale estimated by the global criterion ηK = LPr1/2/[Ra(Nu −
1)]1/4 [(1 + η) ln(η)/2(η − 1)]1/4 [7] is maintained below 1.0 (	g/ηK < 1.0). Additionally, the
ratio of 	g to the Batchelor scale, ηB = ηK Pr−1/2 [23], is kept below 2.0 (	g/ηB < 2.0). Moreover,
the grid is uniform in the azimuthal direction, while it is refined near the inner and outer cylindrical
walls in the radial direction to ensure appropriate spatial resolution within the boundary layers
(BLs). Specifically, there are a minimum of eight grid points inside the thermal BLs and 10 grid
points inside the viscous BLs. For temporal discretization, the second-order backward scheme is
employed for the temporal term, while a second-order total variation diminishing (Vanleer) scheme
is used for the convective term. The simulations are conducted with a fixed time step based on the
Courant-Friedrichs-Lewy (CFL) criterion, ensuring that the CFL number remains below 0.7 in all
simulations. To achieve statistical convergence, the simulations are run for a sufficient duration (80
free-fall time) after the system reaches a statistically stationary state (100 free-fall time). The relative
difference of Nu based on the first and second halves (εNu = |(〈Nu〉0−T/2 − 〈Nu〉T/2−T )|/Nu) of the
simulations is less than 1%. All relevant details are presented in Table I–III in the Appendix. As
mentioned above, the simulations are conducted in Cartesian coordinates. However, the ACRBC
system is more naturally described in cylindrical coordinates, and the results are subsequently
transformed into this format during the simulations. To ensure the expression aligns better with
the conventions of ACRBC, the resolutions in the Appendix are presented as Nr × Nϕ instead of
Nx × Ny.

The primary objective of this study is to investigate the influence of roughness on the flow dy-
namics and heat transport in the sheared ACRBC system. Among the various options for roughness
shapes, we specifically focus on the isosceles right triangular rib as the simplest geometric model.
This choice allows us to analyze its impact on the statistical properties of turbulent sheared ACRBC.
Our main research question involves understanding how the presence of roughness elements affects
both the global transport and local flow statistics in sheared ACRBC turbulence. To facilitate
direct comparisons with previous findings [11], we set the radius ratio, denoted as η, to 0.5. In
all simulations, we maintain a fixed Prandtl number (Pr) of 4.3, corresponding to the working fluid
properties of water at a temperature of 40 ◦C. As mentioned earlier, the inverse Rossby number is
set to Ro−1 = 20, enabling us to explore a range of Rayleigh numbers (Ra) from 106 to 108 and a
range of angular velocity differences � from 0 to 1 using the 2D-DNS method. A positive value
of � indicates that the inner cylinder rotates at a higher angular velocity than the outer cylinder in
the stationary reference frame. Detailed simulation parameters can be found in Tables I–III in the
Appendix.
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III. RESULTS AND DISCUSSION

A. Heat transport and boundary layer

We commence our analysis by investigating the influence of shear force exerted by rough walls on
heat transport in ACRBC. Research conducted with smooth walls in ACRBC [11,12], Couette-RBC
[24,25], and Poiseuille-RBC [26] demonstrated an initial suppression of heat transport due to
shear-induced effects. However, the scenario changes when the walls are not smooth. As illustrated
in Fig. 3, the Nusselt number (Nu) is plotted against the nondimensional angular velocity difference
(�) for three distinct combinations of roughness elements (Cases A, B, and C) at Ra = 106,
Ra = 107, and Ra = 108. For each case, as � increases, three universal regimes emerge, distin-
guished by different background colors. Additionally, two critical nondimensional angular velocity
differences, �c1 and �c2, are identified for each Ra. However, there are variations in the values of
�c1 among the cases. Specifically, the value of �c1 for Case A is smaller compared to that for Cases
B and C. This dissimilarity can be attributed to the fact that both inner and outer walls are rough in
Case A, whereas Case B (Case C) only features a rough inner (outer) wall, with the other wall being
smooth.

Now let’s focus on Case A [Fig. 3(a)]. It can be observed that in the regime below �c1, heat
transport experiences a significant enhancement caused by wall shear, referred to as Regime I,
the buoyancy-dominant regime. Conversely, above �c2, a nearly purely diffusive state is observed,
resulting in the minimum value of Nu. This is referred to as Regime III, the shear-dominant regime.
Between these two regimes, Nu experiences a sharp decrease, indicating an abrupt transition referred
to as Regime II (the transitional regime).

The regime behaviors in Case B and Case C resemble those of Case A, although they are less
pronounced. Within each case, in Regimes I and II, the heat transfer efficiency (Nu) increases
with increasing Ra. However, as the shear force intensifies and the flow becomes more stable, the
values of Nu for different Ra converge in Regime III, as shown in Fig. 3. Notably, the critical
nondimensional angular velocity difference �c2 for Ra = 108 is slightly larger than the values for
Ra = 106 and Ra = 107 (changing from �c2 = 0.7 to 0.6). This can be attributed to the fact that a
stronger shear force is required to transition the flow towards a laminar state under strong centrifugal
buoyancy. It is worth mentioning that the Nusselt number (Nu) for the rough cases in Regime III
exceeds that for the smooth case. This outcome can be attributed to the slight disturbance caused
by wall roughness, preventing the flow from reaching a completely laminar state. Consequently,
the Nu value for the rough case exceeds 1, which is the Nu value for the smooth case in the
laminar regime. Additionally, compared to a smooth wall, a rough wall has a larger surface area
due to the presence of rough structures, which increases the effective contact area with the fluid.
Even in the absence of radial velocity, the heat exchange area between the wall and the fluid is
enlarged.

To demonstrate the effects of enhancement, we include three dashed lines in Fig. 3: the red dashed
line represents the value of Nu at � = 0 for Ra = 106, the blue dashed line represents the value of
Nu at � = 0 for Ra = 107, and the orange dashed line represents the value of Nu at � = 0 for
Ra = 108. For the purpose of analysis, we focus on Case A, which exhibits the most significant
heat enhancement among the considered scenarios. As shown in Fig. 3(a), it can be observed
that a maximal enhancement of 5.79 times is achieved at � = 0.2 for Ra = 108. This significant
increase in Nu is noteworthy as it qualitatively deviates from the findings of Zhong et al. [11] in
smooth ACRBC, where Nu initially decreases with � before reaching a minimum (see Fig. 4). It is
important to note that Wagner et al. [27] established an upper bound on heat transfer enhancement
solely due to regular surface roughness, expressed as Nu/Nus(0) � Aw/As, where Nus(0) represents
the Nusselt number in smooth cases without shear, Aw is the wetted covering surface area over
the roughness, and As is the covering area over a smooth surface. However, our study reveals that
the maximal enhancement rate Nu/Nus(0) ≈ 5.79 at Ra = 108 and � = 0.2 far exceeds the upper
bound Aw/As ≈ 1.72 under the influence of external shear. In other words, the enhancement of heat
transport is primarily influenced by the shear of rough walls rather than solely by the increase of
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FIG. 4. Nusselt number Nu as a function of nondimensional angular velocity difference � for three
different rough cases at (a) Ra = 106, (b) Ra = 107, and (c) Ra = 108. The corresponding results for the smooth
case [11] at the same Rayleigh numbers are also presented for comparison.

surface area. This enhancement of heat transport through shearing of rough walls has also been
reported by Jin et al. [28] in classical Rayleigh-Bénard convection (RBC). The mechanism behind
how the shear of rough walls enhances heat transfer will be discussed later.

Figure 4 illustrates the relationship between the Nusselt number Nu and the nondimensional an-
gular velocity difference � for three different rough cases with Ra = 106, Ra = 107, and Ra = 108.
The corresponding results for the smooth case [11] at the same Rayleigh numbers are also presented
for comparison. The figure reveals that although the trends of Nu varying with � are consistent
for different cases at the same Ra, there are some distinctions among them. At each Rayleigh
number, the values of Nu follow a descending order (Case A > Case B > Case C) at the same
�. The highest Nusselt number (Nu) observed in Case A at the same � can be attributed to the
roughness of both the inner and outer cylinders in this case. In Case B, the inner cylinder is rough
with 16 isosceles right triangles, while the outer cylinder is smooth. Conversely, in Case C, the
inner cylinder is smooth, and the outer cylinder is rough with 32 isosceles right triangles. Despite
Case B having a lower number of roughness elements compared to Case C, the Nu of Case B
surpasses that of Case C. This disparity can be explained as follows: In Regimes I and II, heat
transport primarily depends on the convection of hot plumes detached from the outer wall and cold
plumes detached from the inner wall. In Case B, the detached cold plumes from the inner rough
wall collide with the concave surface of the smooth outer wall, leading to effective “rebounding” by
the outer wall. However, in Case C, the detached hot plumes from the outer rough wall encounter
the convex surface of the smooth inner wall, which limits their effective "rebounding.” As a result,
despite Case B having fewer roughness elements compared to Case C, the Nu of Case B is greater
than that of Case C. In Regime III, characterized by nearly laminar flow, heat transfer primarily
relies on thermal conduction. According to Eq. (9), the value of Nu at this stage increases with
an increasing radius ratio η. The effective radius ratio for Case A is approximately 0.58, for
Case B it is approximately 0.55, and for Case C it is approximately 0.53. Consequently, the Nu
values exhibit a descending order (Case A > Case B > Case C) in Regime III, as depicted in
Fig. 4.

Based on the analysis conducted above, it is discovered that the coupling of wall shear and
roughness in ACRBC can lead to a significant enhancement in heat transfer efficiency under specific
conditions. Particularly, when the shear strength is relatively low, buoyancy dominates the heat
transfer process, resulting in a substantial improvement. Surprisingly, at certain combinations of
Ra and �, the heat transfer efficiency can reach its maximum, surpassing the previously established
upper limit of heat transfer enhancement. However, as the shear strength exceeds a certain threshold,
the flow transitions into a diffusive regime, resulting in the minimum value of Nu. Additionally,
the presence of rough walls, which increases the effective contact area and introduces slight
disturbances, prevents the flow from entering a laminar state. Moreover, different combinations
of rough walls have varying effects on Nu, with the highest Nu observed when both the inner and
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FIG. 5. Dimensionless value δth/δ of the roughness height as a function of the Rayleigh number for Case
A. Here δth donates the estimated thickness of the thermal boundary layer, given by δth ≈ σd/(2Nu), where σ

is the geometry factor defined as σ = [(Ri + Ro)/(2
√

RiRo)]4 [33], and δ is the height of roughness element.
The dashed lines of the corresponding colors for each Ra indicate the value of δth/δ at � = 0.

outer walls are rough, followed by the case where only the inner wall is rough while the outer wall
is smooth, and finally, the case where the outer wall is rough while the inner wall is smooth.

It is commonly observed that roughness can enhance heat transfer within the conduction layer
when the roughness height is comparable to or less than the thickness of the thermal boundary layer,
showing with an increase in prefactor or scaling law [29–31]. However, as the Rayleigh number
continues to increase and the roughness height becomes much larger than the thermal boundary
layer thickness, the classical scaling law Nu ∼ Ra1/3 should be observed rather than the ultimate
scaling of Nu ∼ Ra1/2, since in this regime, the vortices generated by the roughness are no longer
confined within the conduction layer [32]. Figure 5 vividly presents the normalized thermal BL
thickness, δth/δ, as a function of shear strength (�) for various Rayleigh numbers in Case A. Here
the thermal boundary layer thickness, δth, is estimated using the formula δth ≈ σd/(2Nu), in which
σ represents the geometry factor defined as σ = [(Ri + Ro)/(2

√
RiRo)]4 [33], and the red, blue, and

orange dashed lines represent respectively the values of δth/δ at � = 0 for Ra = 106, Ra = 107,
and Ra = 108. Note that Fig. 5 is intended to offer an alternative view of the data presented in
Fig. 3(a). As depicted in Fig. 5, the nondimensional thermal BL thickness, δth/δ, for the three
different Rayleigh numbers is initially less than 1 at the beginning of the explored parameter range
(� = 0.01), indicating that the thermal BL thickness is smaller than the height of the roughness
elements at this �. With increasing shear, δth/δ initially decreases and then gradually increases in
Regime II until reaching a maximum value in Regime III. This opposite trend compared to that of Nu
indicates a distinct changing process. It is worth noting that in Regime II, the thermal boundary layer
thicknesses for different Rayleigh numbers become larger than the height of the roughness elements
as the shear of the rough walls strengthens. This observation suggests a diminishing influence of
roughness on heat transfer with increasing shear within this regime. Furthermore, Fig. 5 reveals that
the thickness of the thermal boundary layer follows a descending order for Ra = 106, Ra = 107,
and Ra = 108 at the same � in Regimes I and II. This indicates that the impact of the rough-
ness elements on flow dynamics and heat transfer is most pronounced in Ra = 108, followed by
Ra = 107, and least significant in Ra = 106 in these two regimes. However, with further increasing
�, the thermal boundary layer thicknesses for these three Rayleigh numbers become equal in
Regime III. Consequently, the Nu values for each Ra become identical. The findings presented
in Fig. 3 are strongly supported by these quantitative results.
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FIG. 6. The convective and diffusive contributions to the heat flux for Case A at different nondimensional
angular velocity difference � and Ra = 107 (a), where all results are normalized by the heat flux of the
nonvortical laminar state Jcon. The corresponding snapshots of temperature field superposed with instantaneous
velocity vectors in cases of � = 0 (b), � = 0.01 (c), � = 0.05 (d), and � = 0.1 (e).

B. The mechanism of heat transport enhancement

As mentioned earlier, the enhancement of Nusselt number (Nu) is observed in the buoyancy-
dominant regime of ACRBC with rough walls, as depicted in Fig. 3. This finding is in stark contrast
to previous studies conducted with smooth walls in ACRBC [11,12], Couette-RBC [24,25], and
Poiseuille-RBC [26], where Nu were initially suppressed due to shear-induced effects. Therefore, a
crucial question arises: how is the heat transfer efficiency improved in rough wall cases of ACRBC?

In Rayleigh-Bénard convection, the heat flux is calculated as J = 〈urθ〉ϕ,t − κ∂r〈θ〉ϕ,t . Here
the first term represents the convective contribution, and the second term represents the diffusive
contribution [9]. Figure 6(a) illustrates the radial profiles of these two contributions for Case A
at different shear strengths (�) and Ra = 107. The dotted, solid, and dashed lines respectively
correspond to the total heat flux and the convective and diffusive contributions. The gray, red, blue,
and orange lines respectively correspond to � = 0, � = 0.01, � = 0.05, and � = 0.1. It is worth
noting that the total heat flux shows minimal variation across the radius, indicating sufficient spatial
and temporal resolutions in our simulations. Furthermore, it can be observed that the convective
contribution to the heat flux is predominantly concentrated in the central region and diminishes
towards the boundaries, as expected. In contrast, the diffusive contribution dominates near the walls
but diminishes to nearly zero in the middle. More importantly, both the convective and diffusive
contributions increase with shear in the buoyancy-dominant regime. Consequently, the total heat
flux increases with �, implying that the shear from rough walls enhances heat transport. In order to
provide a clear visualization of the heat transport enhancement in the buoyancy-dominant regime,
Figs. 6(b)–6(e) present the instantaneous temperature field superposed with instantaneous velocity
vectors at various nondimensional angular velocity differences (�) for Ra = 107. It can be observed
intuitively that the cold and hot plumes, which serve as the main heat carriers in turbulent convec-
tive heat transfer [34], become thicker and stronger as � increases. Furthermore, the convection
intensifies with higher �, indicating an enhanced efficiency of heat transport. Additionally, the
rotating rough walls function like conveyor belts, facilitating enhanced interactions between the
convection rolls and secondary flows within the cavities formed by the roughness elements. This
efficient pumping mechanism effectively extracts the trapped hot and cold fluids from these cavities,
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FIG. 7. The temperature field superposed with instantaneous velocity vectors and its local enlarged draw-
ings for Case A at Ra = 107 and � = 0.1.

leading to the thinning of thermal boundary layers and intensifying the convective process (as seen in
Fig. 7). Consequently, the heat transport enhancement in this buoyancy-dominant regime is evident.

To delve deeper into the underlying dynamics governing heat transfer behavior, our focus shifts
to the evolution of flow structures under the influence of wall shear. Figure 8 visually presents
the instantaneous temperature [Figs. 8(a)–8(d)] and azimuthal velocity [Figs. 8(e)–8(h)] fields for
Case A at different nondimensional angular velocity difference (�) for Ra = 107. According to
Jiang et al. [7], the convection rolls observed in ACRBC exhibit a prograde rotation around the
axis, with a rotation rate faster than that of the experimental system. This phenomenon, known as
zonal flow, has been extensively studied in experiments involving astrophysical and geophysical
flows [35,36]. The emergence of zonal flow can be attributed to the special geometric structure of
the ACRBC. Under the influence of Coriolis force, the hot plumes detach from the outer cylinder
and the cold plumes detach from the inner cylinder to deflect towards their right-hand side from
their initial direction when the system rotates counterclockwise. As a result, two similar deflection
angles are formed. However, due to the different curvatures of the cylinders, the similar deflection
angles of the hot and cold plumes have distinct effects. The hot plumes directly impact the region
where the cold plumes are ejected, leading to the anticlockwise rotation of the cold plumes and the

FIG. 8. The instantaneous temperature (a)–(d) and azimuthal velocity (e)–(h) fields for Case A at different
nondimensional angular velocity difference � and Ra = 107.

024604-11



XU, ZHONG, SU, ZHAO, HE, SUN, AND WANG

overall flow. On the other hand, the relatively large distance between the ejection position of the
hot plumes and the cold plumes implies that the motion of the hot plumes is not directly influenced
by the cold plumes. Consequently, the hot plumes prevail and drive the overall flow to move in the
same direction as the system rotates. Further detailed analysis can be found in our previous studies
[7,9]. It is noted that our previous research [20] on ACRBC with rough walls demonstrates that
strong Coriolis forces (Ro−1 = 20, the same value used in the present study) significantly weaken
the zonal flow. Additionally, we found that roughness on the outer wall promotes the formation of
zonal flow, while roughness on the inner wall reduces its intensity.

In the absence of shear (� = 0), the snapshots of temperature and azimuthal velocity reveal the
formation of five pairs of convection rolls [identified through five cold plumes detached from the
inner wall in Fig. 8(a)]. However, in the case of smooth ACRBC reported by Zhong et al. [11], only
four pairs of convection rolls are observed. As the value of � increases to 0.1, both our study and
the study conducted by Zhong et al. [11] exhibit a reduction in the number of convection rolls. At
� = 0.1, our study shows the presence of four pairs of convection rolls, whereas Zhong et al. [11]
observes only two pairs. In turbulent thermal convection, the convective heat transport is primarily
characterized by the multiscale interactions between convection rolls and thermal plumes detached
from the boundary layers [4]. The decrease in the number of convection rolls is expected to diminish
the efficiency of heat transport, as observed in the smooth sheared ACRBC study conducted by
Zhong et al. [11]. However, in our study, despite the reduction in the number of convection rolls
from five to four due to wall roughness shear at � = 0.1, there is a significant enhancement in
heat transport [see Fig. 4(b)]. Meaning that the shear forces generated by the rotation of the rough
walls are crucial to the heat transfer process. Specifically, these shear forces disturb the fluid flow
over the surface, making it easier for the fluid within the cavities between the rough elements to be
drawn into the flow field. By examining Figs. 8(b) and 8(f), we observe that although the number
of convection rolls decreases due to the shear of the rough walls, the strength of convection is
intensified by the shear. This finding has also been evidenced in Fig. 6. As mentioned earlier,
the rotating rough walls also act as conveyor belts, facilitating the thinning and disruption of the
thermal boundary layer within the cavities. As the thermal boundary layer becomes thinner, heat
is transferred more efficiently from the heated surface to the fluid, significantly improving heat
transfer. In this way, the shear forces from the rotating rough walls induce turbulence, reducing the
boundary layer thickness and promoting faster heat transfer, ultimately enhancing the overall heat
transfer performance. Consequently, the heat transport is remarkably enhanced, approximately 2.79
times greater than the heat transport at � = 0. It is important to clarify whether the enhancement of
heat transport at � = 0.1 is caused by the zonal flow or by the rotation of rough walls. As mentioned
above, roughness on the outer wall promotes the formation of zonal flow, while roughness on the
inner wall reduces its intensity [20]. If the highest heat transfer efficiency at � = 0.1 were indeed
due to enhanced zonal flow, we would expect Case C (with a rough outer wall and a smooth inner
wall) to exhibit the highest Nu value. However, the results presented in Fig. 3 show that Case A
(with both inner and outer walls rough) has the highest Nu value at � = 0.1, suggesting that the
heat transfer enhancement is not primarily driven by the zonal flow.

Upon further increasing � to 0.3, the observation reveals the presence of two pairs of convection
rolls, with each pair consisting of a large roll covering nearly half of the annulus and a smaller roll.
It can be speculated that the shear imposed by the two boundaries stretches the plumes and enhances
their azimuthal motion in the shear direction. This phenomenon of stretched plumes under shear has
also been observed in sheared ACRBC [11] and sheared RB convection [24,37] with smooth walls.
The flow motion induced by shear aligns with the motion induced by the Coriolis force, causing
hot plumes to turn anticlockwise near the inner cylinder and cold plumes to turn clockwise near
the outer cylinder. Consequently, the imposed shear increases the size of the large roll. Due to the
system size being limited, the number of roll pairs decreases and cannot accommodate four pairs.
Nevertheless, at � = 0.3, the turbulent strength remains higher compared to � = 0. As a result,
the heat transport is reduced approximately 44% compared to that at � = 0.1, but still exhibits
an increase of approximately 93% compared to that at � = 0. Further increasing � to 0.5 leads
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FIG. 9. Radial distribution of azimuthal and time-averaged (a) temperature and (b) azimuthal velocity, for
Case A at different nondimensional angular velocity difference � and Ra = 107. The dashed lines represent
the profiles of the laminar and nonvortical flow. The dotted lines donate the tips of roughness elements.

to a flow that is close to laminar and nonvortical, causing the disappearance of plumes. At this
stage, convection and heat transfer are significantly suppressed, and heat transport relies mainly
on conduction. The presence of plumes, which are essential heat carriers, becomes challenging.
Consequently, the Nusselt number (Nu) experiences a significant drop, reaching approximately 12%
of the value at � = 0. The findings from Fig. 8 indicate that the modulation effect of the rough
walls on flow structures is governed by the interaction between wall shear and buoyancy, which is
discussed in Fig. 3.

Figure 9 displays the averaged temperature and azimuthal velocity profiles for Case A at
different values of �. The dashed lines represent the profiles for laminar and nonvortical flow. The
temperature profile is described by the function θ = ln(r/Ri )/ ln(Ro/Ri ), and the azimuthal velocity
profile is given by uϕ = −(1 + η2)�r/(1 − η2) + 2R2

i �/[(1 − η2)r], as proposed by Ali et al. [38]
and Zhong et al. [11]. In Fig. 9(a) it can be observed that the bulk temperature deviates from the
arithmetic mean temperature of the two boundaries (θm = 0.5) when � � 0.1. This asymmetry in
temperature profiles without shear and with slight shear is attributed to the inherent asymmetry
caused by the effects of radially dependent centrifugal buoyancy, as reported by Wang et al. [9] and
Zhong et al. [11]. However, as the shear increases to � = 0.3, the bulk temperature approaches the
arithmetic mean temperature (θm = 0.5). This indicates the presence of more cold plumes generated
and detached from the inner rough walls, as clearly observed in Fig. 8(c). With further increasing �,
the temperature profile gradually evolves towards a laminar and nonvortical flow profile, indicating
the dominance of shear at this stage.

Regarding the azimuthal velocity profile shown in Fig. 9(b), a similar behavior to the bulk
temperature is not observed. At � = 0, the strong Coriolis force (Ro−1 = 20) effectively restricts
the flow movement in the direction of system rotation, resulting in nearly zero azimuthal velocity
in the absence of shear. As shear is imposed, the averaged azimuthal velocity varies from � at the
inner cylinder to −� at the outer cylinder. As � increases, the azimuthal velocity profile gradually
approaches a laminar flow profile as well. It should be noted that even at the strong shear � = 0.5,
the azimuthal velocity profile still deviates from the laminar flow profile. This can be attributed to
two reasons: first, the calculated laminar flow profile assumes a radius ratio of η = 0.5, while the
effective radius ratio for Case A is approximately η ≈ 0.58; second, the flow is not entirely in a
laminar state at this � and Ra, as evidenced by the decreasing Nusselt number Nu with further
increasing � until � � 0.6 (as shown in Fig. 3). Figure 9(b) also shows that the azimuthal velocity
(which indicates the strength of the zonal flow) at � = 0.1 is lower compared to � = 0.5 and
� = 0.5, yet the Nu value at � = 0.1 remains the highest [as presented in Fig. 3(b)]. This further
supports the conclusion that the heat transfer enhancement is not caused by the strengthening of the
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zonal flow. Additionally, the absolute value of azimuthal velocity decreases from the top position of
the roughness elements to the valley, particularly evident for large �, indicating that the flow within
the roughness elements remains relatively stagnant compared to the boundaries. These quantitative
results provide additional insight into the flow structures affected by rough walls shear and strongly
support the conclusions regarding regime transition illustrated in Fig. 3.

In summary, the investigation of sheared (ACRBC) with rough walls reveals a remarkable
enhancement in heat transfer efficiency, particularly in the buoyancy-dominant regime. This is in
stark contrast to the cases of smooth-wall ACRBC, Couette-RBC, and Poiseuille-RBC, where the
Nusselt number Nu is initially suppressed due to shear effects. By decomposing the Nu, it is found
that both convective and diffusive contributions increase with shear, resulting in an overall rise in
heat flux, indicating that shear of rough walls enhances heat transfer. Moreover, the analysis of flow
structures demonstrates that as shear strength increases, the plumes become stronger, leading to
intensified convection and improved heat transfer efficiency. The rough walls also act as conveyors,
facilitating the interaction between convective vortices and secondary flows within the cavities
formed by the roughness elements, further enhancing the convective process. As shear strength
continues to rise, although the number of convective vortices decreases, their intensity increases,
resulting in higher heat transfer efficiency compared to cases without shear. However, as shear
further increases, the flow approaches a nonvortical laminar regime, the plumes disappear, and heat
transfer becomes primarily dependent on thermal conduction, leading to a significant decrease in the
Nusselt number. These findings reveal the significant impact of rough walls on flow structures and
heat transfer efficiency, providing an explanation for the enhanced heat transfer observed in sheared
ACRBC with rough walls.

IV. CONCLUSIONS

In this study, we conducted extensive two-dimensional direct numerical simulations to explore
the coupling effects of wall shear and roughness on annular centrifugal Rayleigh-Bénard convection
(ACRBC). We considered three specific combinations of rough walls, each characterized by a
uniform roughness element height of δ = 0.1L. In Case A, the inner cylinder is equipped with
16 isosceles right triangles that are evenly distributed in the azimuthal direction, while the outer
cylinder features 32 triangles. In Case B, the same number of roughness elements as in Case A is
maintained on the inner cylinder, but the outer wall remains smooth. Conversely, Case C involves
a smooth inner cylinder combined with a rough outer cylinder, where the number of roughness
elements matches that of Case A. The main findings of this study can be summarized as follows:

As the nondimensional angular velocity difference � increases, the influence of different com-
binations of roughness follows a trend of this order (Case A > Case B > Case C) at the same �.
By considering the critical nondimensional angular velocity differences �c1 and �c2, we classified
three distinct flow regimes: buoyancy-dominant, transitional, and shear-dominant. In the buoyancy-
dominant regime, the flow structures resemble stretched convective rolls similar to those observed in
ACRRB without shear. As the shear increases, the number of convection rolls decreases. However,
the presence of rotating rough walls acts as conveyor belts, promoting interactions between the
convection rolls and secondary flows within the cavities formed by the roughness elements. This
efficient pumping mechanism facilitates the extraction of trapped hot and cold fluids from the
cavities, resulting in the thinning of thermal boundary layers and the strengthening of convection.
Consequently, heat transport (Nusselt number) is enhanced in this regime. When the nondimensional
angular velocity difference is close to the critical value �c1, a sharp and abrupt transition occurs,
leading to a significant decrease in the corresponding Nusselt number. In this transitional regime, the
number of convection rolls decreases as the shear increases, eventually reaching a point where they
become difficult to sustain. Beyond the critical value �c2 of the nondimensional angular velocity
difference, the flow becomes shear-dominant. In this regime, the flow exhibits a laminar nonvortical
pattern for velocity and pure conduction for temperature. These findings have important implications
for controlling heat transfer and flow dynamics in rapidly rotating machines. The understanding of
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the coupling effects between wall shear and roughness in ACRBC can contribute to the optimization
and design of such systems.
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APPENDIX : SIMULATION DETAILS

Tables I–III are the detailed simulation parameters for Case A, Case B and Case C.

TABLE I. Simulation parameters for Case A. The columns from left to right indicate the following: the
Rayleigh number Ra, the nondimensional rotational speed difference �, the resolution employed, the maximum
grid spacing 	g compared with the Kolmogorov scale estimated by the global criterion ηK , the maximum grid
spacing 	g compared with the Batchelor scale estimated by ηB, the calculated Nusselt numbers Nu, and their
relative difference of two halves εNu.

No. Ra � Nϕ × Nr Δg/ηK Δg/ηB Nu εNu

1 1.0 × 106 0 1024 × 128 0.33 0.68 7.46 0.21%
2 1.0 × 106 0.01 1024 × 128 0.33 0.69 7.96 0.27%
3 1.0 × 106 0.05 1024 × 128 0.37 0.76 11.25 0.34%
4 1.0 × 106 0.1 1024 × 128 0.39 0.80 13.76 0.44%
5 1.0 × 106 0.2 1024 × 128 0.39 0.80 13.82 0.43%
6 1.0 × 106 0.3 1024 × 128 0.35 0.72 9.14 0.33%
7 1.0 × 106 0.35 1024 × 128 0.32 0.65 6.65 0.38%
8 1.0 × 106 0.4 1024 × 128 0.23 0.48 2.61 0.45%
9 1.0 × 106 0.5 1024 × 128 0.17 0.35 1.45 0.41%
10 1.0 × 106 0.6 1024 × 128 0.15 0.30 1.26 0.54%
11 1.0 × 106 1 1024 × 128 0.14 0.30 1.25 0.62%
12 1.0 × 107 0 1536 × 192 0.27 0.56 16.23 0.13%
13 1.0 × 107 0.01 1536 × 192 0.28 0.58 18.33 0.21%
14 1.0 × 107 0.05 1536 × 192 0.32 0.67 33.01 0.39%
15 1.0 × 107 0.1 1536 × 192 0.35 0.73 45.21 0.28%
16 1.0 × 107 0.2 1536 × 192 0.36 0.75 49.35 0.32%
17 1.0 × 107 0.3 1536 × 192 0.32 0.66 31.31 0.36%
18 1.0 × 107 0.4 1536 × 192 0.29 0.60 20.94 0.35%
19 1.0 × 107 0.45 1536 × 192 0.24 0.49 9.87 0.48%
20 1.0 × 107 0.5 1536 × 192 0.15 0.32 2.64 0.51%
21 1.0 × 107 0.6 1536 × 192 0.10 0.20 1.27 0.59%
22 1.0 × 107 1 1536 × 192 0.10 0.20 1.26 0.60%
23 1.0 × 108 0 2048 × 256 0.45 0.93 37.13 0.42%
24 1.0 × 108 0.01 2048 × 256 0.50 1.03 56.78 0.33%
25 1.0 × 108 0.05 2048 × 256 0.60 1.24 118.50 0.29%
26 1.0 × 108 0.1 2048 × 256 0.68 1.40 191.33 0.37%
27 1.0 × 108 0.2 2048 × 256 0.73 1.51 258.88 0.26%
28 1.0 × 108 0.3 2048 × 256 0.66 1.38 177.51 0.43%
29 1.0 × 108 0.4 2048 × 256 0.56 1.15 88.12 0.38%
30 1.0 × 108 0.5 2048 × 256 0.48 0.99 48.38 0.43%
31 1.0 × 108 0.6 2048 × 256 0.22 0.45 3.05 0.60%
32 1.0 × 108 0.7 2048 × 256 0.13 0.27 1.28 0.66%
33 1.0 × 108 1 2048 × 256 0.13 0.27 1.28 0.59%
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TABLE II. Simulation parameters for Case B.

No. Ra � Nϕ × Nr Δg/ηK Δg/ηB Nu εNu

1 1.0 × 106 0 1024 × 128 0.32 0.67 7.32 0.28%
2 1.0 × 106 0.01 1024 × 128 0.33 0.68 7.56 0.24%
3 1.0 × 106 0.05 1024 × 128 0.34 0.71 8.76 0.31%
4 1.0 × 106 0.1 1024 × 128 0.36 0.74 10.24 0.35%
5 1.0 × 106 0.2 1024 × 128 0.35 0.73 9.77 0.37%
6 1.0 × 106 0.3 1024 × 128 0.33 0.69 8.13 0.47%
7 1.0 × 106 0.35 1024 × 128 0.27 0.56 3.94 0.27%
8 1.0 × 106 0.4 1024 × 128 0.22 0.46 2.43 0.36%
9 1.0 × 106 0.5 1024 × 128 0.16 0.33 1.38 0.53%
10 1.0 × 106 0.6 1024 × 128 0.12 0.26 1.13 0.46%
11 1.0 × 106 1 1024 × 128 0.12 0.26 1.13 0.57%
12 1.0 × 107 0 1536 × 192 0.26 0.55 15.05 0.26%
13 1.0 × 107 0.01 1536 × 192 0.27 0.56 16.11 0.44%
14 1.0 × 107 0.05 1536 × 192 0.29 0.61 22.35 0.62%
15 1.0 × 107 0.1 1536 × 192 0.30 0.62 24.47 0.61%
16 1.0 × 107 0.2 1536 × 192 0.30 0.62 23.41 0.45%
17 1.0 × 107 0.3 1536 × 192 0.28 0.58 18.17 0.48%
18 1.0 × 107 0.4 1536 × 192 0.25 0.52 11.96 0.51%
19 1.0 × 107 0.45 1536 × 192 0.20 0.41 5.54 0.57%
20 1.0 × 107 0.5 1536 × 192 0.15 0.32 2.59 0.43%
21 1.0 × 107 0.6 1536 × 192 0.08 0.17 1.14 0.48%
22 1.0 × 107 1 1536 × 192 0.08 0.17 1.13 0.65%
23 1.0 × 108 0 2048 × 256 0.43 0.89 31.42 0.39%
24 1.0 × 108 0.01 2048 × 256 0.45 0.92 36.75 0.41%
25 1.0 × 108 0.05 2048 × 256 0.48 0.99 47.83 0.38%
26 1.0 × 108 0.1 2048 × 256 0.48 1.00 50.67 0.42%
27 1.0 × 108 0.2 2048 × 256 0.47 0.97 45.27 0.43%
28 1.0 × 108 0.3 2048 × 256 0.45 0.93 37.94 0.56%
29 1.0 × 108 0.4 2048 × 256 0.44 0.92 35.78 0.49%
30 1.0 × 108 0.5 2048 × 256 0.43 0.88 31.01 0.52%
31 1.0 × 108 0.6 2048 × 256 0.20 0.42 2.57 0.48%
32 1.0 × 108 0.7 2048 × 256 0.11 0.24 1.15 0.55%
33 1.0 × 108 1 2048 × 256 0.11 0.23 1.14 0.64%
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TABLE III. Simulation parameters for Case C.

No. Ra � Nϕ × Nr Δg/ηK Δg/ηB Nu εNu

1 1.0 × 106 0 1024 × 128 0.32 0.67 7.32 0.32%
2 1.0 × 106 0.01 1024 × 128 0.33 0.68 7.44 0.19%
3 1.0 × 106 0.05 1024 × 128 0.33 0.69 8.03 0.28%
4 1.0 × 106 0.1 1024 × 128 0.34 0.70 8.43 0.36%
5 1.0 × 106 0.2 1024 × 128 0.32 0.66 6.76 0.38%
6 1.0 × 106 0.3 1024 × 128 0.30 0.62 5.59 0.45%
7 1.0 × 106 0.35 1024 × 128 0.25 0.52 3.28 0.47%
8 1.0 × 106 0.4 1024 × 128 0.22 0.46 2.41 0.32%
9 1.0 × 106 0.5 1024 × 128 0.16 0.33 1.35 0.49%
10 1.0 × 106 0.6 1024 × 128 0.11 0.22 1.07 0.51%
11 1.0 × 106 1 1024 × 128 0.11 0.22 1.07 0.53%
12 1.0 × 107 0 1536 × 192 0.26 0.54 14.03 0.22%
13 1.0 × 107 0.01 1536 × 192 0.27 0.55 15.30 0.32%
14 1.0 × 107 0.05 1536 × 192 0.28 0.57 17.46 0.38%
15 1.0 × 107 0.1 1536 × 192 0.28 0.57 17.92 0.45%
16 1.0 × 107 0.2 1536 × 192 0.26 0.53 13.69 0.51%
17 1.0 × 107 0.3 1536 × 192 0.24 0.50 10.69 0.44%
18 1.0 × 107 0.4 1536 × 192 0.22 0.46 7.67 0.29%
19 1.0 × 107 0.45 1536 × 192 0.17 0.35 3.24 0.37%
20 1.0 × 107 0.5 1536 × 192 0.15 0.31 2.38 0.33%
21 1.0 × 107 0.6 1536 × 192 0.07 0.15 1.08 0.26%
22 1.0 × 107 1 1536 × 192 0.07 0.15 1.07 0.44%
23 1.0 × 108 0 2048 × 256 0.42 0.87 28.81 0.51%
24 1.0 × 108 0.01 2048 × 256 0.43 0.90 32.88 0.41%
25 1.0 × 108 0.05 2048 × 256 0.43 0.90 32.98 0.32%
26 1.0 × 108 0.1 2048 × 256 0.43 0.90 33.49 0.43%
27 1.0 × 108 0.2 2048 × 256 0.41 0.85 26.50 0.34%
28 1.0 × 108 0.3 2048 × 256 0.38 0.78 19.05 0.51%
29 1.0 × 108 0.4 2048 × 256 0.37 0.78 18.78 0.52%
30 1.0 × 108 0.5 2048 × 256 0.33 0.68 11.47 0.34%
31 1.0 × 108 0.6 2048 × 256 0.17 0.33 1.55 0.49%
32 1.0 × 108 0.7 2048 × 256 0.10 0.21 1.09 0.57%
33 1.0 × 108 1 2048 × 256 0.10 0.20 1.08 0.61%
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