

Distributed Supplemental Heat

The **ThermIQ** solution integrates an **OhmIQ** heater into an accumulator tank, along with a three-port valve, circulation pump, temperature sensors, pressure transducer, piping, and an electrical control system box for connection to the building's data network and **ThermIQ**'s cloud services to provide supplemental heat where and when needed.

ThermIQ unit electrical capacity	300 W		USB User Interface		MQTT (IOT)	B M	
Circulation pump flow rate	1.58-4.75 GPM		QAT Sensors / Controls		TCP Network Sta		
Accumulator tank capacity	1.32 Gallons		OhmIQ Engine Capabilities				
Supply temperature from ThermIQ unit (Discharging/Recharging)	194°F - 122°F	120	trol Loop Heating				
Maximum heat supply temperature from main system	131°F			Smart Sch	eduling		
Dimensions	25" x 18" x 10"			F			
Electricity requirement	120 V, 60 Hz	e milg					

OCCUPANCY CONTROLS

patterns, optimizing energy usage and comfort.

TEMPERATURE SENSOR CONTROLS Monitors temperature data. ively adjusting heating tions to maintain desired nfort levels while minimizing

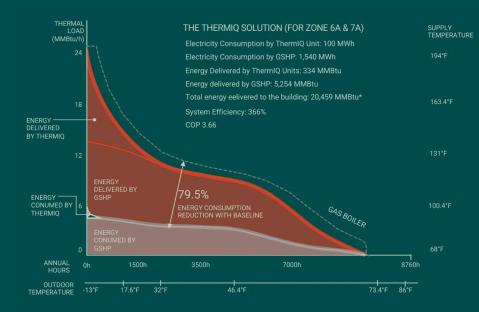
lQ

WEATHER-BASED CONTROLS Adjust heating operations, factoring in temperature and humidity levels for optimal

J

SUPPLEMENTAL HEATING Adjusts heating temperatures ed on der mand, optimizing ASHP operation and selective activating ThermIQ units for maximum efficiency

> DEMAND-RESPONSE CONTROLS Adjust heating in response to utility signals, optimizing energy use and supporting grid stabilit


Enabled with IOT

Performance Comparison

(from modeling NY office building)

The table below presents a summary of the performance of the different options. It becomes evident from the table that the ThermIQ solution offers clear quantitative benefits.

Solutions	Baseline Gas Condensing Boiler	Option 1: Electric Boilers	Option 2: Low- Temp. ASHP + Electric Boilers	Option 3: High Temp. ASHP	The ThermIQ Solution with ASHP
Annual GHG Emissions (tCO ₂)	1,269	1,432	599	396	367
Reduction in GHG Emissions		-12.9%	52.8%	68.8%	71.1%
Energy Consumption (MMBtu)	23,884	20,113 (5,890 MWh)	8,404 (2,460 MWh)	5,555 (1,630 MWh)	5,152 (1,510 MWh)
Reduction in Energy		15.8%	64.8%	76.7%	78.4%
Annualized COP	0.8	0.95	2.3	3.4	3.6
OPEX (Energy Cost) (USD)	\$238,110	\$1,296,842	\$541,860	\$358,160	\$332,200

Learn Description