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We study periodically driven Taylor–Couette turbulence, i.e. the flow confined between
two concentric, independently rotating cylinders. Here, the inner cylinder is driven
sinusoidally while the outer cylinder is kept at rest (time-averaged Reynolds number
is Rei = 5× 105). Using particle image velocimetry, we measure the velocity over a
wide range of modulation periods, corresponding to a change in Womersley number
in the range 15 6 Wo 6 114. To understand how the flow responds to a given
modulation, we calculate the phase delay and amplitude response of the azimuthal
velocity. In agreement with earlier theoretical and numerical work, we find that for
large modulation periods the system follows the given modulation of the driving,
i.e. the behaviour of the system is quasi-stationary. For smaller modulation periods,
the flow cannot follow the modulation, and the flow velocity responds with a phase
delay and a smaller amplitude response to the given modulation. If we compare our
results with numerical and theoretical results for the laminar case, we find that the
scalings of the phase delay and the amplitude response are similar. However, the
local response in the bulk of the flow is independent of the distance to the modulated
boundary. Apparently, the turbulent mixing is strong enough to prevent the flow from
having radius-dependent responses to the given modulation.

Key words: rotating turbulence, Taylor–Couette flow, turbulent flows

1. Introduction
Periodically driven turbulent flows are omnipresent. Well-known examples include

blood flow driven by the beating heart, the flow in internal combustion engines, the
Earth’s atmosphere which is periodically heated by the Sun, and tidal currents caused
by periodic changes in the gravitational attraction of both the Moon and Sun.

† Email addresses for correspondence: chaosun@tsinghua.edu.cn, d.lohse@utwente.nl
‡ These authors contributed equally to this work.
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One line of research assumes homogeneous isotropic turbulence. These studies
focused on the global response of the system, i.e. the response amplitude and
the phase shift of quantities such as the global Reynolds number (Lohse 2000),
or the total energy in the system (von der Heydt, Grossmann & Lohse 2003a).
Most numerical studies in addition only used simplified models, such as the GOY
(Gledzer–Ohkitani–Yamada) shell model or the reduced wavevector set approximation
(REWA) (Hooghoudt, Lohse & Toschi 2001; von der Heydt, Grossmann & Lohse
2003b; Hamlington & Dahm 2009). Only a limited number of direct numerical
simulation (DNS) studies have been performed in this field, because of the
computational costs needed to achieve both fully developed turbulence and sufficient
statistical convergence with temporal dependence (Kuczaj, Geurts & Lohse 2006;
Yu & Girimaji 2006; Kuczaj et al. 2008). Also studies on periodically driven wind
tunnels were performed (Cekli, Tipton & Van De Water 2010).

The field of pulsating pipe flow has received significantly more attention,
presumably because of its clear industrial and biophysical relevance – see e.g.
Womersley (1955), Shemer, Wygnanski & Kit (1985), Mao & Hanratty (1986),
Lodahl, Sumer & Fredsøe (1998), He & Jackson (2009), and many others. In most
studies, like in the present study, an oscillatory flow was superimposed on a steady
current. Depending on the relative strength, the system was either ‘current-dominated’
or, for strong oscillations, ‘wave-dominated’, the majority of the studies being
current-dominated (Manna, Vacca & Verzicco 2012). For many cases it was found
that pulsations increase the critical Reynolds number (Sarpkaya 1966; Yellin 1966),
and that an initially turbulent flow can relaminarize when a periodic forcing is
applied (Ramaprian & Tu 1980; Shemer et al. 1985). In most studies the Reynolds
number of the imposed oscillatory flow, however, was close to the laminar–turbulent
transition (Lodahl et al. 1998); thus, even if the steady current was fully turbulent,
the oscillation was not.

Periodically driven turbulence also includes studies in a number of different well-
known and canonical closed flow geometries, such as Rayleigh–Bénard convection
(Jin & Xia 2008; Sterl, Li & Zhong 2016) and von Kármán flow (Cadot, Titon &
Bonn 2003). In these systems the forcing was periodically varied over time, with the
variations being of O(10 %) of either the average forcing or the energy input.

The main observations made in the studies on sinusoidally driven turbulence were
similar regarding the global response of the system (Cadot et al. 2003; von der Heydt
et al. 2003a,b; Kuczaj et al. 2006; Chien, Blum & Voth 2013). The periodic driving
is governed by the Womersley number Wo = L

√
Ω/ν, which can be seen as the

square root of the dimensionless modulation frequency. Here, L is a characteristic
length scale, ν the kinematic viscosity and Ω the angular oscillation frequency. In
the limit of extremely small Womersley numbers, the flow can fully respond to
the changes, meaning that the flow behaviour is quasi-stationary. In this regime,
no phase delay Φdelay between the response and the modulation is observed, and
the response amplitude is identical to the modulation amplitude. As the Womersley
number is increased, the fluid system cannot follow the changing boundary conditions:
the response amplitude decreases and a phase delay between input and response is
observed. In the extreme case of infinite Womersley numbers, the response amplitude
vanishes and a phase delay can no longer be defined.

In this paper, we study the physics of periodically driven turbulence in a
Taylor–Couette (TC) apparatus, employing a sinusoidally driven inner cylinder. TC
flow, i.e. the flow of a fluid confined in the gap between two concentric cylinders, is
one of the canonical systems in which the physics of fluids is studied – see e.g. the
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recent reviews by Fardin, Perge & Taberlet (2014) and Grossmann, Lohse & Sun
(2016). It has the advantage of being a closed system with an exact global energy
balance (Eckhardt, Grossmann & Lohse 2007), and due to its simple geometry TC
systems can be accessed experimentally with high precision.

An important difference between pipe flow and TC flow is the way the system is
driven. Pulsating pipe flow is driven by a time-dependent pressure difference applied
to the system, but the walls remain fixed. Therefore, momentum is transported from
the bulk flow to the boundary layers. In TC flow, the (periodic) driving is by the
rotation of the cylinders, so that the momentum is transported from the boundary layer
to the bulk flow. By periodically driving the inner cylinder, we directly modulate the
boundary layer, which transports the modulations to the bulk flow, whereas in pipe
flow the bulk flow is directly modulated by the applied pressure gradient. Therefore,
studying periodically driven TC turbulence sheds light on the role of the boundary
layers in transporting these modulations. Further important differences are the presence
of curvature effects and centrifugal forcing in TC, which are clearly absent in pipe
flow. Apart from several recent studies that focused on the decay of turbulent TC
flow (Ostilla-Mónico et al. 2014; Verschoof et al. 2016; Ostilla-Mónico et al. 2017),
or time-dependent driving close to the low-Reynolds-number Taylor-vortex regime
(Ahlers 1987; Walsh & Donnelly 1988; Barenghi & Jones 1989; Ganske, Gebhardt
& Grossmann 1994; Borrero-Echeverry, Schatz & Tagg 2010), to our knowledge no
work has been conducted so far on TC turbulence with time-dependent driving.

The outline of this paper is as follows. We start by explaining the experimental
method in § 2. The results, in which we present the response of the flow, are shown
in § 3. Finally, we conclude this paper in § 4.

2. Method
In this study, we restrict ourselves to the case of inner cylinder rotation, while

keeping the outer cylinder at rest. The inner cylinder rotation is set to

fi(t)= 〈 fi〉t(1+ e sin(2πt/T)), (2.1)

in which fi(t) is the rotation rate of the inner cylinder at time t and T = 2π/Ω is
the period of the modulation. The time t is related to the phase Φ by Φ = 2πt/T .
Here we chose to study the current-dominated regime. To do so, the modulation
amplitude is set to e = 0.10 throughout this work, so that the mean flow is one
order of magnitude larger than the induced modulation. The time-averaged rotation
rate 〈 fi〉t is set to 〈 fi〉t = 5 Hz, resulting in a time-averaged Reynolds number of
〈Rei〉t = 〈ui〉td/ν = 2π〈 fi〉trid/ν = 5 × 105. In this equation, ui = 2πfiri equals the
velocity of the inner cylinder with radius ri, ν is the kinematic viscosity and d
is the gap width between the cylinders. Here, we are in the so-called ‘ultimate
turbulence’ regime, in which both the bulk flow and boundary layers are fully
turbulent (Kraichnan 1962; Chavanne et al. 1997; Grossmann & Lohse 2011;
Huisman et al. 2012). The strength of the modulation, which can be estimated
as 1Rei ≡ e〈Rei〉t = 5× 104, is such that the system is well into the ultimate regime
at all times. We varied the modulation period T from 180 s down to 3 s. The
modulation period can be made dimensionless, resulting in the Womersley number,
which is defined as

Wo= d
√

2π/(Tν). (2.2)

See table 1 for all experimental parameters. The Womersley number is connected with
the Stokes boundary layer thickness δ = 2π

√
2νT/(2π), which, in its dimensionless
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(a) (b)

Laser

Camerar
z

0.20

0.22

0.24

0.26

0.28

0 0.02 0.04–0.04 0.06–0.02
0.2

0.3

0.4

0.6

0.5

x (m)
y 

(m
)

FIGURE 1. (Colour online) (a) Schematic of the vertical cross-section of the T3C facility.
The laser illuminates a horizontal plane (r, θ ) at mid-height (z = l/2) for all particle
image velocimetry (PIV) measurements. The flow is imaged from the bottom with a
high-resolution sCMOS (scientific complementary metal oxide semiconductor) camera to
obtain the velocity components uθ and ur in the (r, θ ) plane. (b) A typical instantaneous
flow field, as measured with PIV. Here we show u=

√
u2

r + u2
θ normalized with the inner

cylinder velocity ui, for the case with Wo = 44.3, Φ = 2.17 rad and an instantaneous
Reynolds number of Rei = 5.4× 105.

〈Rei〉t 1Rei T (s) Wo δ̃

5× 105 5× 104 3 114.3 0.078
5× 105 5× 104 5 88.6 0.100
5× 105 5× 104 10 62.6 0.142
5× 105 5× 104 20 44.3 0.201
5× 105 5× 104 30 36.2 0.246
5× 105 5× 104 60 26.6 0.348
5× 105 5× 104 90 20.9 0.426
5× 105 5× 104 180 14.8 0.602

TABLE 1. Experimental details of the measurements. In all measurements the time-
averaged Reynolds number as well as the modulation strength are kept identical. By
changing the modulation period T , we consequently change the Womersley number Wo.
In the last column, we show the normalized Stokes boundary layer thickness δ̃ = δ/d.

form δ̃ = δ/d =
√

8π/Wo, is proportional to the inverse of the Womersley number.
The modulation frequency was limited by the power of the motor needed to accelerate
and decelerate the mass of the inner cylinder (160 kg). Owing to vibrations in the
system, higher-order statistics cannot be measured. We then simultaneously measured
the rotational speed of the inner cylinder fi(t) and the fluid velocity by using non-
intrusive particle image velocimetry (PIV).

The experiments were performed in the Twente Turbulent Taylor–Couette (T3C)
facility (van Gils et al. 2011), as shown schematically in figure 1. The apparatus has
an inner cylinder with a radius of ri = 200 mm and a transparent outer cylinder with
a radius of ro = 279.4 mm, resulting in a radius ratio of η = ri/ro = 0.716, and a
gap width d= ro − ri = 79.4 mm. The height of the set-up is l= 927 mm, giving an

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

w
en

te
 U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

20
 Ju

n 
20

18
 a

t 1
0:

03
:1

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

27
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.276


838 R. A. Verschoof, A. K. te Nijenhuis, S. G. Huisman, C. Sun and D. Lohse

aspect ratio of Γ = l/d = 11.7. As working fluid we use water with a temperature
of T = 20 ◦C, which is kept constant within 0.2 K by active cooling through the
end-plates of the set-up. More experimental details of this facility can be found in
van Gils et al. (2011).

The PIV measurements were performed in the (r, θ) plane at mid-height (z= l/2)
using a high-resolution camera operating at 15 frames per second (pco.edge camera,
double-frame sCMOS, 2560 pixel × 2160 pixel resolution). We illuminate the flow
from the side with a horizontal laser sheet, as shown in figure 1. The laser used is a
pulsed dual-cavity 532 nm Quantel Evergreen 145 Nd:YAG laser. We seeded the water
with 1–20 µm fluorescent polyamide particles. We calculate the Stokes number, which
equals Stk= τp/τη = 0.0019� 1. Furthermore, the mean particle radius is roughly six
times smaller than our Kolmogorov length scale; thus we can be sure that the particles
faithfully follow the flow. The images are processed with interrogation windows of
32 pixel × 32 pixel with 50 % overlap, resulting in uθ(r, θ, t) and ur(r, θ, t). We
were unable to measure close to the cylinders due to the strong laser light reflections.

To compare our experiments in highly turbulent flow with the laminar case, we
numerically solved the response of the flow. We therefore solved the partial differential
equation

∂uθ
∂t
= ν

[
1
r

(
∂

∂r

(
r
∂uθ
∂r

))
−

uθ
r2

]
, (2.3)

which is the time-dependent Navier–Stokes equation in cylindrical coordinates for the
azimuthal direction under the assumptions of (i) no azimuthal and axial derivatives,
and (ii) ur= 0 and uz= 0, so that u(r, θ, z, t)= uθ(r, t)êθ . As initial condition we used
the steady-state laminar flow profile, i.e.

uθ(r, t= 0)=
1

1− η2

(
r2

i ωi

r
−ωiη

2r
)
. (2.4)

As time-dependent boundary conditions we set

u(ri, t)=ωiri(1+ 0.1 sin(2πt/T)), (2.5)

and the outer cylinder is stationary, i.e. u(ro, t)= 0. We run the computation for 40
periods, so that all transient effects are gone.

3. Results and analysis
3.1. Velocity response

In figure 2 we show the normalized driving and response of the mid-gap flow velocity
uθ(r̃= 0.5, t) for three different modulation periods. The radius is non-dimensionalized
as r̃= (r− ri)/d, so that r̃= 0 corresponds to the inner cylinder and r̃= 1 to the outer
one. We non-dimensionalize both velocities by their time-averaged value, so both lines
meander around 1. For all oscillation periods, the mid-gap flow velocity oscillates with
the same period T as the driving. The amplitude and phase delay of the response
depend on the driving period. For the larger modulation periods T , uθ responds nearly
in phase with the same amplitude as the driving. For smaller modulation periods, the
response amplitude decreases and a phase delay is observed, just as in prior studies
(Cadot et al. 2003; von der Heydt et al. 2003a,b; Kuczaj et al. 2008; Hamlington &
Dahm 2009).
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FIGURE 2. (Colour online) Normalized azimuthal velocity of the sinusoidally driven inner
cylinder ui/〈ui〉t (solid red) and normalized azimuthal velocity uθ/〈uθ 〉t at mid-gap (solid
blue). Three Womersley numbers are shown, (a) Wo= 88, (b) Wo= 36 and (c) Wo= 15.
The velocity is radially averaged between 0.3 6 r̃ 6 0.7. On the top x-axis, we show the
phase Φ of the modulations in radians.

0.9 1.0 1.1

0.9

1.0

1.1

FIGURE 3. (Colour online) Phase-averaged normalized azimuthal mid-gap flow velocity
uθ/〈uθ 〉t as a function of normalized driving velocity of the inner cylinder ui/〈ui〉t. We
show the result for all measured Womersley numbers Wo. The velocity is radially averaged
between 0.3 6 r̃ 6 0.7. The solid grey line corresponds to the quasi-stationary case
uθ/〈uθ 〉t = ui/〈ui〉t. The arrow at the bottom right indicates the direction of the cycles.

A different representation of a modulation cycle is depicted in figure 3. Here we
plot the data from figure 2 parametrically as a function of Φ. A fully quasi-stationary
cycle completely follows the grey line, in which uθ/〈uθ 〉t = ui/〈ui〉t. The Wo = 15
measurement is close to this line. The deviation from this line, which indicates a phase
delay, increases for smaller modulation periods.

To study whether the flow responds similarly over the gap width, we extend
the analysis from figure 2 to the entire radius (see figure 4). In figure 4(a–c), the
data are normalized by 〈ui〉t = 2π〈 fi〉tri = 6.3 m s−1, i.e. the same constant for all
measurements. The better all lines collapse, the smaller the response amplitude is. For
the bottom row, we chose to normalize with ui(Φ)= 2πri〈 fi〉t[1+ e sin(Φ)], i.e. the
inner cylinder velocity at the corresponding phase in the modulation. Here, when all
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0 0.5 1.0 0 0.5 1.0 0 0.5 1.0
0.3

0.4

0.6

0.5

1.0

0

0.2

0.4

0.6

0.8

(a) (b) (c)

(d ) (e) ( f ) (g)

Laminar

FIGURE 4. (Colour online) Azimuthal velocity profiles as a function of dimensionless
radius r̃. All data are phase-averaged and normalized. (a–c) Here uθ (Φ) is normalized with
the time-averaged inner cylinder velocity 〈ui〉t = 6.3 m s−1, i.e. the same constant value
for all lines. A collapse of all lines indicates that the response amplitude is small, as is
observed for large Wo (see panel (a)). Furthermore, we show the response of laminar flow
to the modulation, calculated numerically (see § 2). (d–f ) Here uθ (Φ) is normalized by the
instantaneous inner cylinder velocity at phase Φ, i.e. ui(Φ) (a value between ui(0.5π)=
6.9 m s−1 and ui(1.5π)= 5.7 m s−1). A collapse of all lines indicates that the behaviour
of the system is quasi-stationary, as can be seen for small Wo in panel ( f ). The solid
grey lines show the azimuthal velocity profile for Rei = 5 × 105 for the non-modulated,
stationary case (data from Huisman et al. (2013b)). (g) The azimuthal velocity uθ (Φ) is
shown for a series of phases of the modulation; here we show data for phases between
0.5π6Φ 6 1.5π, i.e. half of a modulation cycle, as shown in this inset. See also figure 2
for the definition of phase Φ.

lines collapse, the modulation is slow enough for the flow to react to the modulation,
i.e. the system is in a quasi-stationary state. For comparison, the azimuthal velocity
profile for the non-modulated case is shown as a grey line (Huisman et al. 2013b).
Figures 4(a) and 4( f ) depict the most extreme cases. Furthermore, we show the
laminar flow response in the top row. In figure 4(a), the azimuthal velocity of the
flow is almost constant over a modulation cycle, and therefore uθ(r, Φ) is close
to the non-modulated statistically stationary solution for fi = 5 Hz; the flow cannot
adapt to the quick changes of the inner cylinder. For larger Womersley numbers, the
opposite is the case (see figure 4f ). Here, for every phase Φ, the azimuthal velocity
profile is identical to the statistically stationary solution for fi(Φ). This behaviour
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FIGURE 5. (Colour online) The delay between the driving modulation and the fluid
velocity response as a function of Womersley number Wo. The delay Φdelay is normalized
with 2π of the modulation. The phase delay is calculated for a number of radii, not
showing much difference. The same data are shown in linear scale (a) and logarithmic
scale (b). The results are radially binned within r̃ ± 0.025. The inset in (a) shows how
the phase delay Φdelay is defined: Φdelay is calculated by cross-correlating both signals. We
included the scaling of the response for laminar flow, which equals Φdelay ∝Wo.

is surprisingly constant over the entire radius. We note that it might appear as if
the correct boundary conditions are not met. However, as shown in Huisman et al.
(2013b), the boundary layer at the studied Reynolds number is too thin to resolve
from the current measurements.

The laminar flow response is completely different as compared to the measured
turbulent case. First, the response in the flow is restricted to a thin layer close
to the inner cylinder wall. Calculating the thickness of the Stokes boundary layer,
although slightly off due to the presence of the outer cylinder and a cylindrical
coordinate system, gives a similar result, i.e. δ̃(Wo = 88) = 0.10, δ̃(Wo = 36) = 0.24
and δ̃(Wo= 15)= 0.60 (see table 1). Second, the response is radius-dependent, as is
also known from Stokes oscillating plate theory, as the response decays exponentially
with increasing distance from the oscillating wall. These observations highlight how
turbulent mixing enhances the transport of the modulation over the entire radius.

3.2. Phase delay
Up to now the conclusions drawn from figures 2–4 were only qualitative. Here, we
quantify the phase shift and amplitude response for the turbulent case. We extract
the phase delay Φdelay between the modulation and the response by cross-correlating
ui(t) and uθ(t). We detect the first peak in ui ? uθ(τ ), and obtain the phase delay
by fitting a Gaussian function through this peak and its two neighbouring points, to
obtain the peak with increased accuracy. As visible in figure 5, at large modulation
periods, the phase delay is small, as we already qualitatively concluded from figure 2.
As the Womersley number increases, the bulk flow cannot follow the changing
boundary conditions any more and it responds with an increasing delay. Within this
approximation, von der Heydt et al. (2003a) calculated, and Cadot et al. (2003)
experimentally found, that the phase delay has a linear dependence on the modulation
frequency, i.e. Φdelay ∝ Wo2. We do not observe a similar behaviour, however. The
results in the aforementioned studies, which both study homogeneous and isotropic
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turbulence (HIT), are significantly different from what we observe in our TC set-up,
which cannot be regarded as HIT (Huisman, Lohse & Sun 2013a).

As visible in figure 5(b), in this work the dependence of Φdelay is better described
by an effective power law over a range of larger values of Wo, with Φdelay∝Wo1.1. For
the laminar case, the phase lag in the Stokes boundary layer problem is calculated as
Φdelay =

√
2r̃Wo. The exponent 1.1 is close to the value of the laminar flow response,

in which there is a linear dependence between the Womersley number and the phase
delay. The phase lag saturates at around Φdelay = π/2, similar to what is known in
pulsating pipe flow (Womersley 1955; Shemer et al. 1985) and in periodically forced
harmonic oscillators, for example.

We now come to the spatial dependence of the response. Intuitively, one expects
an increasing phase delay further away from the modulated wall. Surprisingly, this is
not the case. Apparently, the turbulent mixing of this highly turbulent flow prevents
the system from having a range of phase delays over the radius, given the fact
that the modulation has been ‘passed on’ from the boundary layer to the bulk
flow. This can be explained by calculating a characteristic time scale τbulk for the
movement from the inner to the outer cylinder, using the Reynolds wind number
Rew = σ(ur)d/ν, in which σ(ur) is the standard deviation of the radial velocity.
We estimate τbulk = d/σ(ur) = d2/Rewν. For the corresponding 〈Rei〉t = 5 × 105, the
Rew value is known from Huisman et al. (2012), resulting in a τbulk = 0.27 s. As
long as τbulk� T , the radial dependence of the phase delay and amplitude should be
negligible, in agreement with our observations. Such small periods T are unfortunately
not accessible experimentally due to the moment of inertia of the cylinders.

3.3. Amplitude response
We calculate the amplitude A of the response for both the velocity and kinetic energy,
which is defined as E = (u · u)/2 ≈ u2

θ/2. Following the approach of von der Heydt
et al. (2003a), the local oscillating responses of the velocity and energy are calculated
as

∆u(t)=
uθ(t)
〈uθ 〉t

− 1 and ∆E(t)=
E(t)
〈E〉t
− 1. (3.1a,b)

We average ∆u(t) and ∆E(t) radially and azimuthally, and make the ansatz that
∆u,E(t) can be described as

∆fit(t)= eA(T) sin(2πt/T +Φdelay). (3.2)

Then ∆fit(t) is fitted to 1(t) with A(T) as sole fitting parameter; Φdelay is not a fitting
parameter, as it is calculated using cross-correlation (see figure 5). In the case of
slow, quasi-stationary modulations, the amplitude response of the azimuthal velocity
can be calculated from (3.1), namely Au = ((1+ e)/1 − 1)/e = 1. Strictly speaking
it is impossible to describe the kinetic energy with a sinusoidal function, as it has
a squared dependence on the velocity, but, as e is small, a sine wave can be used
within the assumption of a linear response. However, the calculation of AE in the
quasi-stationary case is less straightforward, as the response amplitude varies over the
sine wave. We calculate Amax

E = ((1+ e)2− 1)/e= 2.1 and Amin
E = ((1− e)2− 1)/(−e)=

1.9 as the two extremes, leading to a phase-averaged value of AE= 2.0. Both response
amplitudes will vanish in the limit of infinitely fast modulations, i.e. Wo→∞ implies
that Au,E→ 0.

As figure 6 clearly shows, the fluid completely follows the imposed modulation at
larger modulation periods, i.e. amplitude responses of Au= 1 and AE= 2 are observed,
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FIGURE 6. (Colour online) Amplitude response as a function of the Womersley number
Wo for various dimensionless radii. The coloured lines represent our measurements, and
the solid grey lines are numerically calculated laminar flow responses. (a) The response
amplitude of the velocity Au and (b) the response amplitude of the energy AE. The
experimental results are radially binned between r̃ ± 0.025. The dashed grey lines show
the scalings of A as predicted by von der Heydt et al. (2003a). We included the laminar
responses, shown in solid grey lines. A number of radii are included, to highlight the
dependence on the radius, which does not exist in the well-mixed turbulent case. The
effective slope of the measurements A ∝ e−0.025Wo is shown in dashed black. This would
correspond to the slope of the laminar flow response at r̃≈ 0.035.

which corresponds to our expectations. For smaller modulation periods, the response
amplitude decreases. We do not observe clean power laws, as predicted assuming HIT
by von der Heydt et al. (2003a) and Cadot et al. (2003) shown as dashed lines. The
response of the flow can better be described by an exponential function, as indicated
by the solid black line. This is in line with the laminar flow response, in which the
amplitude of the response also is an exponential function of the Womersley number
and the distance to the modulated wall. Note that, in contrast to the turbulent case,
the amplitude response of the laminar case depends on the radius.

Similar to the phase delay between modulation and response, also in the response
amplitude we do not observe any trend over the radius. Here, one could expect a
decreasing A at higher radii, i.e. further away from the modulated wall. Because of the
no-slip condition at the wall, the values of A and Φdelay directly at the wall are fixed,
i.e. Au(ri) = 1 and Φdelay(ri) = 0. At the outer cylinder, Au(ro) = 0, hence Φdelay(ro)
cannot be defined. Clearly, the boundary layers play a pivotal role in transferring
perturbations and modulations to the bulk of the flow.

4. Summary and conclusions
To conclude, we studied periodically driven Taylor–Couette turbulence. We drove

the inner cylinder sinusoidally, and measured the local velocity using particle image
velocimetry. Consistent with earlier studies and theoretical expectations, we observe
a phase delay and declining velocity response as we increase the Womersley number.
Most surprisingly, we did not observe a radial dependence of the phase delay in the
bulk of the flow, nor of the amplitude response, in contrast to the expectation one
might have that there could be a larger influence of the modulation on the flow close
to the modulated wall. Apparently, a radial dependence of A and Φdelay is prevented
by the strong mixing in this turbulent flow. Even though we did not measure directly
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in the boundary layers, their vital importance in transferring modulations to the bulk
flow is evident. This contrasts with our numerical results for laminar flow, where a
strong radial dependence is observed, and the response of the flow is confined to a
thin layer close to the modulated wall. Therefore, it is even more remarkable that the
scaling relations of both the phase delay and the amplitude response are similar to
what had been found for laminar flows.

To further study this interesting phenomenon, direct numerical simulations are
necessary to cover the range of extremely high Womersley number, which is
inaccessible in experiments. Using such data, it will be possible to study the interplay
between the modulated cylinder, the boundary layers and the bulk in more detail,
as the entire flow field will then be available. Another domain of terra incognita
is the study of modulations with larger amplitude. Here, we limited ourselves to
a modulation amplitude of e = 0.1. Larger values induce nonlinear effects, and
linear-response-type assumptions such as those made in (3.1) and (3.2) will then no
longer be valid.
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