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Flutter to tumble transition of buoyant spheres
triggered by rotational inertia changes
Varghese Mathai1, Xiaojue Zhu 1, Chao Sun 1,2 & Detlef Lohse1,2,3

Heavy particles sink straight in water, while buoyant bubbles and spheres may zigzag or

spiral as they rise. The precise conditions that trigger such path-instabilities are still not

completely understood. For a buoyant rising sphere, two parameters are believed to govern

the development of unsteady dynamics: the particle’s density relative to the fluid, and its

Galileo number. Consequently, with these parameters specified, the opportunities for varia-

tion in particle dynamics appear limited. In contrast to this picture, here we demonstrate that

vigorous path-oscillations can be triggered by modulating a spherical particle’s moment of

inertia (MoI). For a buoyant sphere rising in a turbulent flow, MoI reduction triggers a

tumble–flutter transition, while in quiescent liquid, it induces a modification of the sphere

wake resulting in large-amplitude path-oscillations. The present finding opens the door for

control of particle path- and wake-instabilities, with potential for enhanced mixing and heat

transfer in particle-laden and dispersed multiphase environments.
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The buoyancy-driven motion of particles rising or falling
through a fluid has captured the interest of scientists and
engineers for centuries. From the earliest observations of

rising bubbles by Da Vinci to the falling hog-bladder experiments
by Newton, the variability observed in the trajectories of these
particles is intriguing1,2. Such variability can have far-reaching
implications for many natural and industrial particle-laden and
tethered-body flows, wherein the movement of the particles can
significantly alter the drag and the transport of heat and nutrients
in the fluid3. For example, the presence of rising bubbles and
particles in the oceans can result in warmer ocean waters and
larger positive temperature gradients4–6. Similarly, in industrial
reaction catalysis, buoyant particles/bubbles are often released to
enhance mixing in the fluid7–9. From these observations, a link
can be inferred between the oscillatory motions and wakes of the
buoyant particles and the processes of turbulent diffusion at
work. Several studies have emphasized the importance of this10;
however, few have established the precise factors that trigger the
oscillatory dynamics.

The motion of a buoyant particle in a flow is a complex two-
way coupled problem. The particle moves through the fluid in
response to the flow fluctuations, and this motion in turn exerts a
back-reaction on the flow. The path-oscillations that result are
often robust to interactions between the neighboring particles and
to changes in the flow conditions, making the studies of isolated
bodies relevant to multiphase flows11,12. In order to model such
systems, often a prototype problem is considered. The particle is
modeled as a sphere, and the flow is assumed to be turbulent,
homogeneous, and isotropic. For the particle dynamics, two
control parameters have been proposed to be of relevance13,14:
the particle-to-fluid density ratio Γ≡ ρp/ρf, and the particle
Galileo number Ga≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gD3 1� Γð Þ

p
=ν, where g is the acceleration

due to gravity, D is the particle diameter, and ν is the kinematic
viscosity of the fluid. Ga governs the development of wake-
instabilities behind the particle, and Γ, the response of the particle
to these wake-induced forces. Once the background turbulence is
also considered, two additional parameters need to be included:
the particle’s size in relation to the dissipative length scale of the
flow (Ξ≡D/η), and the Taylor Reynolds number, Reλ, of the
flow15. Hence, knowledge of these four dimensionless groups: [Γ,
Ξ, Reλ, and Ga] should seem to completely define the problem.
Expecting these dependences, researchers have performed
extensive studies on the dynamics of light and heavy particles in a
range of flow environments16–18.

A detail that has often been overlooked in the past is the
rotational dynamics of buoyant spherical particles. Theoretical
and numerical studies have mostly employed the classical
Kelvin–Kirchhoff equations, expressing the conservation of linear
and angular momentum for the coupled fluid-body problem2:

Γ þ 1
2
þ BU δ

� �
dU
dt

þ ΓΩ ´U ¼
FQ
mf

þ ðΓ � 1Þg; ð1Þ

1
10

I� þ BΩ δ

� �
dΩ
dt

¼
TQ

mfD2
; ð2Þ

where Γ is the sphere mass-density ratio, U is the sphere velocity
vector, Ω is the angular velocity vector, g is the acceleration due to
gravity, I*≡ Ip/If is the moment of inertia (MoI) ratio, where Ip is
the particle MoI and If is the MoI of the fluid volume displaced by
the particle, FQ and TQ are the fluid force and torque vectors,
respectively, mf is the mass of the fluid displaced by the sphere,
and D is the sphere diameter. Note that δ=

ffiffiffiffiffiffi
ντ
πD2

p
is the dimen-

sionless Stokes boundary layer that develops in time τ19,20. The
prefactors BU= 18 and BΩ= 2 are known analytically from the
unsteady viscous contributions18,21.

Equations (1) and (2) point toward the two parameter
dependences, namely, the particle's mass-density ratio Γ and its
MoI ratio I*. While rotation appears explicitly through Eq. (2), its
effect on the particle dynamics has been ignored for isotropic
bodies (spheres and cylinders). A few experiments detected the
rotation for neutrally buoyant spheres in turbulence22,23; how-
ever, its role on the flow dynamics was not revealed. Even for
freely rising spheres, the rotational effects have been largely
ignored in the past13,14. One possible reason could be the small
torque coefficients (Cτ ~ 10−4) reported in fixed/falling sphere
studies24. From the torque balance for a spherical particle in a

viscous fluid: I� þ k1
1ffiffiffiffiffi
Rep

p
� �

Δζ
Δ~t2 ¼ k2Cτ , one could estimate a

typical rotational amplitude. Here I*≡ Ip/If is the MoI ratio,
where Ip is the particle MoI and If is the MoI of the fluid volume
displaced by the particle. Rep is the mean particle Reynolds
number, Δζ is the rotational amplitude, Δ~t is the characteristic

timescale, and k1 ¼ 20
ffiffi
2
π

q
and k2= 7.5 are prefactors that can be

determined analytically (Supplementary Discussion). The largest
rotation is expected when I* → 0. In this limit, and considering
Rep � Oð103Þ, an order of magnitude analysis would suggest an
amplitude of rotation Δζ ~ 1° (Supplementary Discussion). Such
small rotations were expected to not influence the instability
onset25. Therefore, in most experimental studies, Γ was varied by
using various combinations of hollow and solid spheres made
from a variety of materials13,14,17. In doing so, the particle’s MoI
or I* varied erratically, the implications of which have not yet
been considered.

In the present work, we investigate the possibility of changing
the translational dynamics of spherical particles in flows by
tuning their moment of inertia (MoI). We perform experiments
on three-dimensional (3D) printed spherical particles in a tur-
bulent water flow, and track their translational and rotational
motions by following a pattern painted onto the particles. We
demonstrate that vigorous path-instabilities may be triggered by
simply reducing a particle’s MoI. A sphere with a low MoI
undergoes a fluttering type of motion, while a high MoI sphere
displays a tumbling type of motion. We reveal that the coupling
between translation and rotation for the low MoI spheres is
crucial in triggering these path-instabilities. Finally, we draw
some analogies to the path-instabilities already observed for
anisotropic particles such as disks, strips, and falling cards.

Results
Turbulence experiments. We begin with the case of buoyant
spherical particles released in a turbulent flow. Two spheres were
considered, both weighing ≈15.2 ± 0.1 g, that corresponds to a
mass-density ratio of Γ ≈ 0.88 in water. The spheres have identical
mass, diameter, and surface properties, which leave us with
identical values for the particle control parameters (Γ ≈ 0.88 and
Ga ≈ 6000). This mass ratio is well above the critical mass ratio
(Γcrit= 0.6) reported in prior studies14,17. At the same time, we
introduce a modification to the sphere’s composition. One sphere
was fabricated as a hollow spherical shell, with an MoI, Ip ≈
1.87 × 10−6 kg m2, and the other, as a thin spherical shell with a
dense metallic core, with Ip≈1.05 × 10−6 kg m2 (Fig. 1b). These
resulted in dimensionless MoIs I*≡ Ip/If ≈ 1.0 and 0.6, respec-
tively. Here, Ip is the particle MoI, If=mfD2/10 is the MoI of a
fluid sphere with the same volume as the particle, and mf=
ρfπD3/6 is the mass of the fluid sphere. We note that for a
homogeneous sphere I*= Γ= 0.88. Thus the values of I* we chose
here (I*= 1.0 and I*= 0.6) are higher and lower, respectively,
than the homogeneous case.
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The spheres were released in a turbulent flow, which was
generated using an active grid located upstream to the
measurement section of the Twente Water Tunnel (TWT)
(Supplementary Fig. 1a). The water tunnel was configured to
have a downward flow in the measurement section, with a
Taylor-scale Reynolds number Reλ ≈ 300, and the particle size
was a fraction of the integral scale of the turbulence (Ξ ≈ 100).
The downward mean flow speed in the measurement volume was
adjusted to be comparable to the rise velocity of the particles. This
ensured that the buoyant spheres were rising against the flow,
enabling us to track long particle trajectories26. The typical
duration of a trajectory was around 30 TL (or 100 τviv), where TL
is the integral timescale of turbulence27, and τviv is the typical
vortex-shedding timescale. In total, we recorded a duration of
approximately 500 TL, which gave well-converged Lagrangian
statistics. The particles were imaged using two high-speed
cameras placed at a 90 degree angle between them, and recorded
at 500 frames per second. An analytically prescribed pattern was
painted on the spheres, which enabled us to track their
orientation in 3D (Supplementary Discussion and Supplementary
Fig. 1b–d). This method has been validated and tested28, and the
measurement error in the detected orientation was <1°. The
output of the orientation tracking method in axis-angle conven-
tion was used to obtain the instantaneous angular velocity and
angular acceleration of the spheres. Thus we obtain a complete
description of the particle’s dynamics, composed of three-
translational and three-rotational degrees of freedom.
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Fig. 1 Experimental facility and spheres used in the present study. a A
perspective representation of the measurement section of the Twente
Water Tunnel (TWT) with the two camera experimental arrangement for
tracking the trajectory and orientation of the buoyant spheres in turbulent
flow (not to scale). b, c Cut-section schematics of the high and the low
moment of inertia (MoI) spheres, respectively. The high MoI sphere is
hollow. The low MoI sphere is constructed with a dense metallic core,
which is held in the center using thin spokes as shown in c
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Fig. 2 Tumbling and fluttering motions of buoyant spheres in turbulence. Drawings representative of a typical trajectory traced by the a high MoI sphere
and the b low MoI sphere in a turbulent flow at Reλ≈ 300. The zoomed-in views of the rectangular windows pqrs and jklm are also shown. The high MoI
sphere tumbles in the flow, where the direction of rotation does not change much during the motion. This tumbling motion induces a mean horizontal drift
for the particle. The low MoI sphere flutters in the flow, where the directions of rotation and translation undergo frequent reversals at a rate comparable to
that of vortex-shedding frequency. This fluttering is thought to stabilize its motion to remain vertical to the mean. c Sphere motion transformed into a
moving TNB coordinate system, where T—the direction of the particle’s instantaneous velocity vp, N—direction of curvature of the particle trajectory, and
B—the binormal vector is defined such that N ¼ B´T. The lower figure shows the TNB coordinate system, where the orientation of an arbitrary vector f
can be expressed in terms of the elevation θ and azimuth ϕ angles. d, e Normalized histograms of the angle between the angular velocity vector ω and its
time derivative dω=dt; expressed in terms of Δθ and Δϕ for the d high and e low MoI spheres, respectively. Supplementary Movies 1 and 2 compare the
two types of motion. The typical amplitude of flutter and tumble is 1–2 sphere diameters during an oscillation
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Flutter-to-tumble transition. The above settings lead to a
situation where the control parameters: Γ, Ga, Ξ, and Reλ, are
identical for the spheres we consider. At the same time, the
spheres have notably different moments of inertia (I* ≈ 1.0 and
I* ≈ 0.6). Strikingly, this difference leads to dramatic changes in
the translational dynamics. Evidence for this was first seen while
tracking the movement of the spheres. The low MoI sphere
undergoes zig-zag motions and remains in the middle of the
measurement section. In contrast, the high MoI sphere shows a
tendency to drift horizontally in the flow and approaches the
channel walls (Fig. 2a, b). The mechanism behind these pre-
ferential movements becomes clear when we look at the particle’s
translational and rotational motions simultaneously (Supple-
mentary Movies 1 and 2). The high MoI sphere is in a tumbling
state, while the low MoI sphere displays a fluttering type of
motion. In the tumbling state, the directions of rotation and
translation do not change much during the motion (Fig. 2a).
However, for fluttering, both the rotation and translation undergo
periodic reversals of direction (Fig. 2b) at a rate comparable to the
sphere vortex-shedding frequency (Supplementary Discussion
and Supplementary Fig. 2).

Further evidence for the tumble–flutter transition can be found
by viewing the particle motion from a Lagrangian (TNB)
coordinate system, i.e., one that moves with the sphere (Fig. 2c).
The orientation of a vector is expressed in terms of the elevation
and azimuth θ and ϕ, respectively. In Fig. 2d, e, we show the
normalized histogram of the angle between the vector ω and its
time derivative α � dω=dt. Here ω and α are the angular velocity
and angular acceleration vectors, respectively. An alignment
between these vectors would indicate that the particle’s angular

velocity increases in magnitude but without a change in the
direction of rotation. An anti-alignment would mean that the
angular velocity decreases but without a change in the direction of
rotation. For any situation where ω changes direction, the two
vectors would not be aligned or anti-aligned. Strikingly, for the
high MoI sphere, ω is preferentially aligned with dω=dt (single
peaked). ω also aligns with the mean horizontal drifting direction
of the particle (Supplementary Discussion and Supplementary
Fig. 3), which is evidence that the sphere statistically tumbles in
the direction of its horizontal drift. We believe that this tumbling
motion is crucial in establishing the mean horizontal drift for the
high MoI sphere. The low MoI sphere, however, shows almost
equal probability for ω and dω=dt to be aligned and anti-aligned
(double peaked). In addition, ω does not preferentially align with
the mean horizontal drifting direction of the particle (Supple-
mentary Discussion and Supplementary Fig. 3). Thus a fluttering
type of motion occurs, which stabilizes the low MoI sphere to
remain in the bulk of the water channel flow. An analogy may be
drawn to falling disks, strips, and paper, where a similar
tumble–flutter transition has already been observed owing to
MoI reduction29,30 (Supplementary Movie 3). However, some
form of geometrical anisotropy (of the particle) was considered
necessary to induce this transition31. The present finding
demonstrates that such transitions are possible even for an
isotropic body such as a sphere.

Acceleration statistics. The tumble–flutter transition revealed
that the high MoI sphere drifts predominantly along a particular
direction, whereas the low MoI sphere (fluttering) undergoes
frequent reversals in its direction of motion (Supplementary
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histograms showing the orientation of the angular velocity vector ω in the TNB coordinate system for the c high and d low MoI spheres in the turbulent
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ϕ angles. The particle rotation aligns strongly with B for the low MoI sphere, while it is spread in the NB plane for the high MoI sphere
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Fig. 3 and Supplementary Movies 1 and 2). The fluid forces
responsible for the differences in the dynamics may be gauged
from the particle’s acceleration statistics. Figure 3a shows the
probability density function (PDF) of the centripetal acceleration
aN for the two spheres under consideration. aN is always directed
along N of the TNB coordinate system. A reduction of MoI
produces a significant change in the shape of the PDF, with a
mean value that is almost double to that of the high MoI sphere.
When we compare the angular accelerations, the difference is
even more dramatic (inset to Fig. 3a). If the torques acting on the
spheres were comparable, one would expect the angular accel-
eration to be increased by ~66% (T ¼ Ip d

2θ=dt2). Instead, the
root mean square of angular acceleration is increased by ~430%.
Such a dramatic increase in the angular acceleration can only be
caused by an enhancement in the torque. Clearly, rotation plays a
role in changing the torques acting on the particle, which in turn
leads to enhanced translational accelerations. This is quantified in
Fig. 3b, where we show that the acceleration aN is conditioned on
the magnitude of a rotation-induced lift (or Magnus) force32

FL / vp ´ω. For the high MoI sphere, aN appears to be almost
independent of the Magnus force. However, a clear dependence is
seen for the low MoI sphere. The origin of this becomes clear once
we plot the orientation of ω in the TNB coordinates, (Fig. 3c, d).
For the low MoI sphere (Fig. 3d), ω aligns along the
B direction, resulting in an alignment of �vp ´ω with the
direction of aN. Therefore, the acceleration aN may be written as

aN � a0 + CL vp ´ω
			

			, as shown by the dashed line in Fig. 3b. A

lift coefficient CL ≈−0.2 provides a fair prediction of the increase
in aN. A negative CL of this value is expected32, since we have a
buoyant particle that rises and rotates in the flow33,34. For the
high MoI sphere (Fig. 3c), ω lies in the NB plane with no pre-
ferential orientation, which explains the absence of correlation in
the conditioned acceleration plot, Fig. 3b. Thus tuning the MoI
has enabled us to alter both the fluid forces and torques acting on
a spherical particle, leading to an overall modification of its
dynamics in turbulence. Whether these effects are restricted to a
turbulent flow or not is unclear. To address this, we will next
explore the dynamics of buoyant spheres rising in an undisturbed
flow setting, i.e., in quiescent liquid.

Free-rise experiments. Figure 4 shows the free-rise trajectories
and wake patterns of the high and low MoI spheres rising
through still fluid (Ga ≈ 6000 and Ga ≈ 500). For this experiment,
the spheres were released in a glass tank of 280 × 280 mm2 cross-
section and 1500 mm height. We inject a patch of sodium
fluorescein dye, which is the sodium salt of fluorescein
(C20H10Na2O5). The dye was injected just above the sphere, near
its release position at the base of the water tank (Supplementary
Discussion and Supplementary Fig. 4). Once the sphere is
released, it rises through the dye, entraining a part of the dye with
it, and also shedding some dye in its wake as it rises. The dye
fluoresces for blue illumination (≈490 nm wavelength), which
helps visualize the wake. The intensity of the dye represents the
relative concentration. Note that this does not represent the
absolute vorticity in the wake but only gives a qualitative picture
of the wake pattern, similar to the wake patterns reported in prior
studies14,17. At the high Ga (Ga ≈ 6000 in Fig. 4a), the wake is
turbulent. The high MoI sphere (left) rises with a small amplitude
of oscillation and a nearly vertical wake pattern. When I* is
reduced, large amplitude oscillations are triggered, and we witness
a spread-out wake pattern behind the particle (right). Similarly, at
a lower Ga (Fig. 4b), the oscillation amplitude is enhanced, and
the wakes differ in the spread and the number of structures shed
per oscillation. A similar effect was recently observed by us in
numerical simulations of two-dimensional circular cylinders ris-
ing in still fluid35 (Supplementary Figs. 5 and 6 and Supple-
mentary Movie 6). Presumably, the wake modification due to
particle rotation is crucial to these changes in the oscillation
amplitude. Interestingly, in the free-rise experiments, we do not
observe the tumbling motions. It is likely that the flow pertur-
bations from the incident turbulence are necessary to trigger these
tumbling events.

Discussion
Comparing the sphere and (two-dimensional) cylinder dynamics
has shed light on some key aspects of the buoyancy-driven
motions of isotropic bodies in general. A long-standing debate in
this subject relates to the existence a critical mass-density ratio (Γ
= 0.6 for sphere14, and Γ= 0.54 for cylinder36), marking the
onset of large amplitude vibrations for freely rising spheres and
cylinders. While this has been reported in literature, the physical
mechanism behind such a sharp transition has remained puz-
zling. The main question remains as to how a marginal reduction
in mass density (Γ) could give rise to a significant enhancement in
vibration amplitude, since the effective mass of the system (i.e.,
actual+added mass) changes by only a small factor37. Our
observations suggest that one possible reason for this could lie in
the differences in the particle’s rotational dynamics, which
manifest through its rotational inertia (since I* changes along
with Γ in most situations). This new perspective might also
explain the origin of the wide variation that was witnessed in
prior experimental studies on freely rising spheres13,14 and
cylinders36.

On a different note, the insights gained here may also be of
relevance to the rising motions of spherical bubbles in water. It is
well known that, when the bubble surface is contaminated, it
spirals or zig-zags38, while the same bubble in pure water rises
vertically straight39 (up to a certain larger Galileo number). The
clean bubble, owing to its free-slip boundary condition, obviously
does not rotate. In contrast, the contaminated bubble can rotate
due to a combination of no-slip at the interface and low rotational
inertia (I* → 0). These could be the contributing factors to the
observed differences in the onset behavior of their path-
instabilities40,41. For non-spherical particles (and deformable
bubbles), the role of MoI might be even more crucial. For a non-
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Fig. 4 Free-rise experiments of buoyant spheres. a Trajectories and wakes
of high (left) and low (right) MoI spheres at Ga≈ 6000. b Trajectories and
wakes of high (left) and low (right) MoI spheres at Ga≈ 500. In a, b, the
wakes were visualized by releasing a fluorescent dye. False coloring was
adopted based on the intensity of the dye in the wake. Note that the
diameter scale ‘D’ is shown in each case. Reducing the MoI or allowing
rotation at fixed Γ triggers an increase in the oscillation amplitude along
with a change in the wake pattern. Supplementary Movies 4 and 5
correspond to the cases shown in a, b, respectively
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spherical particle, the torque on the particle arises from two
contributions: from skin friction forces and pressure forces2.
Additionally, the particle’s angle of attack changes as it rotates,
resulting in significant torques. Thus strong rotational motions
can be expected, and hence the MoIs might have a major role in
observed particle dynamics. The coupled translational and rota-
tional motions of non-spherical particles (oblate and prolate
ellipsoids) will be the focus of a future investigation.

In conclusion, the use of simultaneous 3D particle position and
orientation tracking has enabled us to resolve the coupled
translational and rotational dynamics of buoyant spherical par-
ticles in a range of flow environments. We have shown that the
onset of path-instability can be closely linked to the rotation of
the particle and that resonance may be induced (or inhibited) by
tuning the particle’s MoI. This radically changes the way one
perceives the dynamics of buoyancy-driven isotropic bodies, and
opens the door for control of path- and wake-instabilities by
tuning the rotational inertia. The concept could be exploited in
chemical engineering processes, where the mixing and transport
of nutrients can be effectively enhanced through the introduction
of vigorously vibrating spheres7. Further, the flutter–tumble
transition we observed for buoyant spheres in turbulence offers a
few flow-control opportunities. For instance, particles that
migrate toward channel walls could be used to modify the near-
wall flow structure3. By tuning the MoI, one could design spheres
that accumulate near the walls, with potential for drag/heat
transfer modifications in dispersed multiphase flow environ-
ments. Other avenues of application could lie in sports ballistics,
where zig-zag and spiral trajectories add to the unpredictability of
the game. While this has historically been achieved by introdu-
cing surface heterogeneities and/or spin to the ball42, rotational
inertia could be used as an additional lever to trigger such path-
instabilities, thereby lending richer diversity to various ball sports.

Methods
Experimental methods. The experiments were performed in the TWT facility, in
which an active grid generates nearly homogeneous and isotropic turbulence in the
measurement section. The water tunnel was configured to have a downward flow in
the measurement section, and the Taylor Reynolds number of the flow Reλ ≈ 300.
We used a high-precision 3D printer (Rapidshape S30L) to fabricate the hollow
spherical particles. The surface roughness was within 25 μm, and the spheres were
symmetric for any plane passing through their geometric center. Rolling and
floating tests were used to check for any inconsistencies. The particles were imaged
using two high-speed cameras placed at a 90 degree angle between them (Sup-
plementary Discussion and Supplementary Fig. 1). An analytically prescribed
pattern was painted on the spheres.

Image processing. The particles were detected using the Circular Hough Trans-
form method, which was implemented using the imfindcircles function in
MATLAB. The projection of the painted pattern was compared with the synthetic
image to retrieve the orientation (Supplementary Fig. 1c,d). Combining the two
detection methods, we can track six degrees of freedom for the sphere released in
the turbulent flow.

Data availability. The data that support the findings of this study are available
from the authors upon reasonable request.
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