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 Abstract: Background: The global incidence of type 2 diabetes (T2D) persists at epidemic pro-
portions. Early diagnosis and/or preventive efforts are critical to attenuate the multi-systemic 
clinical manifestation and consequent healthcare burden. Despite enormous strides in the under-
standing of pathophysiology and on-going therapeutic development, effectiveness and access 
are persistent limitations. Among the greatest challenges, the extensive research efforts have not 
promulgated reliable predictive biomarkers for early detection and risk assessment. The emerg-
ing fields of multi-omics combined with machine learning (ML) and augmented intelligence 
(AI) have profoundly impacted the capacity for predictive, preventive, and personalized medi-
cine.   

Objective: This paper explores the current challenges associated with the identification of pre-
dictive biomarkers for T2D and discusses potential actionable solutions for biomarker identifi-
cation and validation.   

Methods: The articles included were collected from PubMed queries. The selected topics of in-
quiry represented a wide range of themes in diabetes biomarker prediction and prognosis.  

Results: The current criteria and cutoffs for T2D diagnosis are not optimal nor consider a myri-
ad of contributing factors in terms of early detection. There is an opportunity to leverage AI and 
ML to significantly enhance the understanding of the underlying mechanisms of the disease and 
identify prognostic biomarkers. The innovative technologies being developed by GATC are ex-
pected to play a crucial role in this pursuit via algorithm training and validation, enabling com-
prehensive and in-depth analysis of complex biological systems.  

Conclusion: GATC is an emerging leader guiding the establishment of a systems approach to-
wards research and predictive, personalized medicine. The integration of these technologies 
with clinical data can contribute to a more comprehensive understanding of T2D, paving the 
way for precision medicine approaches and improved patient outcomes. 
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1. INTRODUCTION 

Type 2 diabetes (T2D) diagnosis is characterized by ele-
vation in circulating blood glucose. The hyperglycemia is 
largely related to inadequate insulin response, often preceded 
by progressive insulin resistance. T2D affects an estimated 
462 million people, or roughly 6% of the world's population. 
The consequential persistent hyperglycemia manifests in 
diabetes‐associated complications[1]. The complications are 
apparent across systems, inducing alterations in protein syn-
thesis and release. Mortality associated with T2D exceeded  
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one million individuals in 2017, implicating it as the ninth 
leading cause of mortality[1]. In the US, approximately 25 
million Americans ages 20 – 64 have T2D which corre-
sponds to about 11% of this age group. Total health care and 
related costs are approximately $174 billion annually[2]. It 
has been well-established that the metabolic underpinnings 
that promote disease development occur well before the ele-
vation in blood glucose and consequential uncompensated 
insulin response in T2D. While early identification is critical 
to prevent or delay T2D onset, many individuals with T2D 
have not been diagnosed[3]. The International Diabetes Fed-
eration (IDF) has reported approximately 50% of individuals 
who would meet the criteria for T2D do not know that they 
have the disease. As a result, treatment is delayed or absent, 
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increasing risks for adverse health outcomes and substantial 
economic burden. Further, a substantial number of Ameri-
cans with impaired glucose tolerance or prediabetes, who 
also incur significant healthcare costs[3]. The combined es-
timated US annual healthcare and public health outreach 
spending is in the in billions of dollars. Yet, a more compre-
hensive understanding of how to beneficially translate evi-
dence-based practices from research towards enhanced dis-
semination and improvement of services continues to be 
limited. Collectively, the public health implications of T2D, 
undiagnosed T2D, and pre-T2D represent a significant na-
tional and international health challenge.  

The differentiation among individuals with T2D, pre-
T2D, or euglycemia resides in the implementation of well-
accepted criteria. The 2019 ADA report states that the most 
widely used measures of fasting plasma glucose (FPG), 2-hr 
plasma glucose obtained from an oral glucose tolerance test 
(OGTT), and hemoglobin A1c (HbA1c) are each generally 
appropriate for diagnosing T2D.  However, classifications 
based on the glucose-based protocols and HbA1c values have 
been met with equivocal results [4,5]. A recent study by 
Tucker (2020), including over 7400 adults, reported that the 
HbA1c assay misdetected T2D nearly 67% of the time, and 
FPG was accurate in less than half of the cases, demonstrat-
ing that high specificity accompanied by low sensitivity may 
evoke unintended consequences in the context of T2D sur-
veillance and preventive/intervention efforts[6]. Further, 
Khosla et al. (2021) reported that HbA1c criteria inadequate-
ly characterized gluco-regulatory status among individuals 
of heterogeneous US residents of African descent (Africans 
residing in the US, African American, Caribbean) popula-
tion[7]. Randomized controlled trials (RCT) are often 
fraught with heterogeneity which elicits significant limita-
tions to clinical research, as well as confounds drug devel-
opment efficacy studies in patients with T2D.   Further, T2D 
and comorbidities are frequently different across ra-
cial/ethnic groups, potentially leading to over- or under- 
specification of biomarker relevance. This includes (but is 
not limited to) those with varying stages of the disease, dif-
ferent comorbidities like hypertension or cardiovascular dis-
ease, different ages, ethnic backgrounds, genetic variations 
and lifestyles, or those on different concurrent medications. 
As such, well-accepted criteria have well-established limita-
tions. 

Despite well-described limitations[8-10], glycated hemo-
globin (HbA1c) maintains its position as one of the best in-
dicators of glycemic control and an accurate proxy for esti-
mating average serum glucose levels over the past three-
month period across clinical and community settings. The 
clinical utility of the HbA1c biomarker resides in the mini-
mal effect short, large fluctuations in serum glucose levels 
have on the measurement of glycated hemoglobin buildup 
over the lifetime of red blood cells. The consistent increase 
in glucose over time leads to an increase in the fraction of 
glycated hemoglobin.  Unfortunately, elevated HbA1c levels 
indicate that cellular damage has already begun, combined 
with an increase in reactive oxygen species within red blood 
cells (RBCs).  Free radicals and/or reactive oxygen species 
(ROS) can alter RBC membrane properties, inducing RBC 
aggregation, increased blood viscosity, impaired blood flow, 
and inflammation. ROS accumulation leads to the oxidation 

of Fe2+-Hb to Fe3+-Hb into the less stable ferryl Hb (Fe4+-

Hb)[11].  The instability of Fe4+ increases reactivity with 
several amino acids to restore the Fe3+Hb oxidation state. 
This, in turn, induces cellular damage and leakage of Fe4+-

Hb into the vessel sub-endothelial matrix (endothelial per-
meability)[11], which further augments the activation of the 
pro-inflammatory cascade. The monocyte adhesion proteins 
lead to the accumulation of macrophages on blood vessel 
surfaces in response.  The progressive build-up of these 
plaques links T2D to atherosclerosis and, ultimately, cardio-
vascular diseases. Although the chronic cascade described 
represents the typical progressive nature of T2D, the patho-
physiology can be reversible[12,13]. If symptoms can be 
identified prior to damage to organ systems, glucose homeo-
stasis can be reestablished. A novel platform that can be used 
to overcome barriers to T2D screening and prevention and 
promote equitable dissemination and implementation among 
underrepresented communities is highly warranted.   

The clinical implementation of T2D intervention and 
prevention strategies resides in understanding heterogeneity 
in addition to the current understanding of traditional risk 
factors.  The relative risk of T2D for each patient can be 
integrated into decision-making, i.e., risk prediction models. 
In theory, risk prediction models can determine an individu-
al’s prognostic risk of T2D as well as the predictable out-
come of the untreated disease or the response to treatment 
and management strategies for those already diagnosed. Ma-
chine learning (ML) and deep learning (DL) are augmented 
intelligence (AI) techniques that have been adopted to con-
struct prediction models using multi-omic data, including 
genomics, transcriptomics, epigenomics, and proteomics. 
Leveraging the advanced technologies established through 
AI and analytical multi-omics methods, GATC has applied 
algorithms to “-omics” data from the population to establish 
efficient and accurate identification of biomarkers. The 
overarching goal is to optimize multiomic tools to help elu-
cidate the pathophysiology of T2D and thus enable early 
prediction of predisposition and progression of T2D.  Such 
scientific tools provide insightfulness to understanding due 
to the tools' ability to project causal associations between 
metabolite and protein markers, which can highlight path-
ways within T2D early detection. Integrating multiomic 
analyses will assist in identifying the causal biomarkers re-
sponsible for the early onset of T2D as well as differentiat-
ing among those with diabetes, prediabetes, or normal glu-
cose metabolism[14].  

Given that T2D is not a single, uniform disease entity, 
the biological and mechanistic underpinnings of T2D may 
differ greatly across individuals. Heterogeneity makes it 
challenging to pinpoint biomarkers that apply universally 
across all cases.  Diagnostic evaluation by OGTT, HbA1c, or 
FPG, although relatively cost‐effective, does miss valuable 
understanding of etiopathologies, probable disease progres-
sion, or potential future risk (if glucose is within normal lim-
its).  Although an ideal biomarker necessitates consistent 
stability over time and across different physiological condi-
tions, biomarker levels can be influenced by factors such as 
daily variations, diet, medications, and other transient fac-
tors, which can complicate their identification and interpreta-
tion. In addition, T2D often develops over a long period with 
a gradual progression from insulin resistance to overt hyper-
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glycemia. To date, the identification of biomarker(s) that can 
accurately predict disease development and progression dur-
ing this latency period is difficult due to the subtle and dy-
namic nature of these changes. Further, racial/ethnic differ-
ences in glucose handling have been documented and impact 
the accuracy of disease progression. The novel and patented 
predictive machine learning engines designed by GATC 
Health data scientists used input data and augmented intelli-
gence (AI) tools to both identify causal biomarkers and cal-
culate ratios and correlations between marker levels in pa-
tient samples, such as serum/plasma, saliva or urine, leading 
to the establishment of a gradient scale for assessment of a 
patient’s risk for T2D. Importantly, circulating biomarkers 
are dynamic in nature, and changes may not reflect distinct 
patterns of physiological or pathological conditions. Accord-
ingly, a modern approach to biomarker discovery involves 
integrating data from various "omics" sources (genomics, 
proteomics, metabolomics) along with clinical and lifestyle 
data. Analyzing and interpreting these complex datasets re-
quires sophisticated computational techniques and bioinfor-
matics expertise. Moreover, machine learning iterations that 
compare ratios of serum biomarkers with lipid intermediate 
correlations, combined with proteome data, provide a rich 
multi-omic dataset for the elucidation of T2D causal bi-
omarkers.  

The utility of AI continues to emerge, providing oppor-
tunities to improve or enhance the prognosis prior to the 
clinical manifestation of T2D along the health continuum. 
These AI applications have begun to be used for more tar-
geted therapies across conditions, showing promise in im-
proving screening and diagnosis early identification of risk 
for complications, thereby reducing morbidity and mortality, 
with the goal of improving quality of life, while decreasing 
healthcare costs. Continuously emerging yet compelling 
evidence suggests the high utility of AI in identifying poten-
tial prognostic biomarkers for the disease is highly relevant 
to T2D. Several studies focused on identifying associations 
between HbA1c and a number of biomarkers for T2D have 
been conducted, yet few have uncovered a potential predic-
tive value related to protein and or lipid changes induced by 
T2D. Proteomics and lipidomics play a significant role in 
elucidating the key constituents of cellular membranes by 
providing unprecedented insight into T2D screening and 
biomarkers of this disease. Proteomics serves to classify all 
proteins that can participate in the biological processes of an 
organism as well as identify biological profiles of molecular 
products of transcription, whereas lipidomics allows for in-
terrogation of, more specifically, molecular lipid species 
associated with T2DM risk factors. Progress in proteomics 
and lipidomics offers a new and innovative approach by 
which T2D prediction models can be utilized for early iden-
tification, differentiation and discrimination of pathways 
associated with T2D progression and has the potential to 
facilitate precise screening, diagnosis, prevention, manage-
ment and treatment strategies.  

While there are tradeoffs associated with the inclusion of 
multiple factors and homogeneity in populations, it is as-
sumed these concerns can be overcome in the future, in AI 
models.  As such, incorporating comprehensive datasets, 
including laboratory and genetic data, is essential to improve 
the accuracy of AI. In that regard, the inclusion of data only 

from low-risk or high-risk populations while improving ac-
curacy within that specific group leads to potentially com-
promised generalizability.  Conversely, data from non-
selected populations in AI applications improve generaliza-
bility potentially as the “expense” of accuracy in predictive 
capacity across populations. The availability of novel data 
that can be incorporated is becoming increasingly more 
prevalent. As the data amasses, so does the capacity to im-
prove the predictive ability of AI, yet usability is not sacri-
ficed.  Comprehensive datasets that include international 
datasets with diverse populations will undoubtedly lead to a 
vast improvement in the predictive ability while limiting 
population bias by race, ethnicity, geographic location, or 
other factors. The growing interest in leveraging large elec-
tronic medical record (EMR) data to develop prediction 
models using AI algorithms is increasingly gaining traction. 
Indeed, the incorporation of vast variables that have the 
prognostics capacity based on well-established influence on 
glucose homeostasis from very large cohorts of patients, 
allows the advanced AI technology platform to fill an evi-
dence gap.  Collectively, AI can identify and sample clinical 
factors that affect glucose levels; however, such applications 
are also limited to “patients,” limiting prognostication poten-
tial.  

Prediction and/or prognostication models capitalizing on 
the use of advanced statistical techniques integrating various 
modeling applications (e.g., gradient boosting, random forest 
classification, recurrent neural net, and logistic regression) 
have rapidly emerged in therapeutic applications. Over the 
past five years, an AI diagnostic system that autonomously 
diagnoses patients with diabetic retinopathy using deep 
learning DL has been cleared by the Food and Drug Admin-
istration (FDA). The systems that have been granted FDA 
approval have demonstrated high sensitivities and specifici-
ties above 90% for the detection of referable diabetic reti-
nopathy in clinical settings.  However, in real-world settings, 
the performance of the algorithms has been less than opti-
mal.  

In the context of T2D, the capacity of AI to support a 
precision medicine paradigm necessitates multiple types of 
genetic, genomic, physiological, environmental biomarkers 
and behavioral data collection that are assembled and ana-
lyzed with methods leveraging augmented AI that can identi-
fy patterns without being specifically programmed to find 
them (i.e., ML). Many biomarker studies suffer from limited 
sample sizes, making it challenging to detect subtle associa-
tions with disease outcomes. Additionally, findings from one 
study might not replicate consistently in other cohorts due to 
differences in study populations, methodologies, and data 
quality. Biomarker discovery is only the initial step. Validat-
ing the identified biomarkers in independent populations and 
demonstrating their clinical utility requires rigorous testing 
and long-term follow-up studies. This process can be time-
consuming and resource-intensive. Genetic and environmen-
tal factors can vary across different ethnic populations, lead-
ing to differences in disease risk and biomarker expression. 
This variability complicates the identification of universally 
applicable biomarkers. The dynamic nature highlights the 
importance of the timing of biomarker measurements in rela-
tion to disease progression and treatment effects. Untangling 
the effects of these comorbidities on biomarker profiles re-
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quires careful consideration and adjustment. As presented in 
Table 1, recent investigations continue to be met with chal-
lenges of longitudinal assessment, appropriate methods of 
interrogating progression or non-generalizability.  In addi-
tion, despite the vast interest in AI and ML applications, few 
studies have leveraged platforms outside of those already 
diagnosed with T2D (and frequently T2D with a co-
morbidity).  While Table 1 presents current research in the 
field, it is not meant to be an exhaustive list; rather, it pro-
vides an overview of the current landscape and highlights the 

need for comprehensive novel approaches. The present re-
search highlights the lack of 1) a consistent methodological 
approach to the identification of prognostic biomarker(s), 2) 
gaps in longitudinal assessments, 3) inclusion of significant 
population-based differences, and 4) a comprehensive AI or 
ML-driven approach to identify prognostic biomarkers for 
T2D. Table 1 also serves as an indication of the persistent 
challenges in the identification of prognostic biomarkers, 
even with the availability of AI and ML.  

 
Table 1. Recent publications reporting metabolic, inflammatory and cognitive predictive biomarkers for T2D. 

Berezin AE, 2019[15] Review Paper 
Natriuretic peptide (NP) system alterations, stress-responsive cytokine, 

macrophage activation and high-sensitivity cardiac troponins are involved 
in the pathogenesis of T2D and complications. 

Wigger L, et al, 
2021[16] 

Conducted a multi-omics analysis of pancreatic 
islets pancreatectomized living humans stratified 

by glucoregulatory capacity. 

Islet gene expression was differentially regulated early in pre-T2D individ-
uals as suggested by a progressive, pattern-less remodeling of mature beta 

cells. 

Slieker RC et al. 
2023[17] 

Human pancreatic islets 

Homocitrulline, isoleucine 2-aminoadipic acid, eight triacylglycerol spe-
cies, and lowered sphingomyelin levels were associated with accelerated 

progression towards the need for insulin. fGDF15/MIC-1, IL-18Ra, 
CRELD1, NogoR, FAS, and ENPP7 were implicated as contributors to 
progression, while SMAC/DIABLO, SPOCK1 and HEMK2 appeared 

protective. 

Moin ASM et al. 
2022[18] 

Included twenty-three subjects with T2D and 
matched non-diabetic control Caucasian subjects 

(ages 40–70 years). 

Lower in T2D Adiponectin, Endocan and Mast/stem cell growth factor 
receptor-Kit (KIT). Cathepsin-D and Cadherin-E, and Kallikrein-4, Ami-
noacylase-1, Insulin-like growth factor-binding protein-4 (IGFBP4) and 

Reticulon-4 receptor (RTN4R) were higher in T2D. No changes in protein 
level expression were detected in T2D, suggesting protein synthesis is 

independent of glucose variability. 

Zhang Y et al. 
2021[19] 

1932 patients with T2D and acute myocardial 
infarction (AMI) divided into tertiles according to 

their triglyceride glucose index (TyG) were in-
cluded. 

The TyG index was positively associated with MACCEs, suggesting that 
the TyG index is a valid marker for risk stratification and prognosis in 

patients with T2D and AMI. 

Su WY et al. 2019[20] 
The retrospective study enrolled 3524 patients 

with T2D 2009 until 2015. 

FBG and the TyG represent useful predictive indices over HbA1c and tri-
glyceride for cardiovascular (CV) events and may offer an additional prog-

nostic benefit in T2D 

Cheema AK et al. 
2020[21] 

Secondary data analysis of metabolomic and 
proteomic profiling for investigation of the differ-

ential expression of the genes. 

STAT3 and HIF, Interleukin 6 (IL6) were found to be predictive of T2D 
progression. Dysregulation of the coupled expression of (TNF, IL6, LEP, 
AGT, APOE, F2, SPP1, and INS) was also found to be predictive of T2D 

progression. 

Alur V et al. 2023[22] 

 

NexGen sequencing to identify the differentially 
expressed genes between T2D and healthy con-

trols. 

APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, 
and SQSTM1, might be linked with risk of T2D. 

Resl M, et al, 
2021[23] 

Prospective study of 746 patients with T2D, being 
followed up for 60 months. 

Prognostic performance of the biomarkers of interest (GDF-15, NT-
proBNP, hs-TnT). 

Bai Y et al. 2022[24] 
A longitudinal cohort study of 516 without diabe-
tes over 9 years, 51 developed T2D, and 92 pre-

T2D. 

Replacing FBG or OGTT or both with glycated albumin in T2D prediction 
models made no significant changes to the areas under the curve modeling 

Schmidt MI, et al, 
2019[25] 

Brazilian Longitudinal Study of Adult Health 
(ELSA-Brasil) cohort study of active or retired 

civil servants, 35-74y 

ADA-criterion-based impaired fasting glucose (IFG) has the highest sensi-
tivity but misclassifies ~50% of adults as having intermediate hyperglyce-

mia and poorly predicts T2D. 
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Morgan-Benita J et al. 
2022[26] Implementations of genetic algorithms. 

>100 metabolites identified with the five most accurate metabolites con-
sidered potential biomarkers for progression were ceramide, phosphatidyl-

choline, ganoderic acid C2, triglyceride and phosphatidylethanolamine 

Banimfreg BH et al. 
2022[27] 

A case-control study with untargeted metabolom-
ics to explore novel T2D biomarkers (n=92) 

In the Emirati population, cortisol, glycocholic acid, bile acids, thyroxine, 
and the tryptophan metabolite, 5-hydroxyindoleacetic acid were considered 

Ungurianu A et al. 
2022[28] Review 

Among patients with T2D, significant differences were identified in In-
flammatory Predictive Biomarkers (AOPPs, AGEs, CRP, CRP/HDL, 
CRP/IL-6, IL-10/IL-6, IH1) compared to non-T2D controls. Glycemic 

control was strongly positively influenced (CRP/IL-10) and inversely (IL-
10, IL-10/IL-1β ratio). 

Kapłon-Cieślicka A et 
al. 2019[29] 

 

284 T2D patients leptin, resistin, and TNF-α con-
centrations were measured 

Higher resistin levels are associated with reduced survival in T2D, irre-
spective of TNF-α. Leptin was not a prognostic factor. 

Garcia-Carretero R, et 
al, 2021[30] 

Progression to overt T2D over the 12-year obser-
vation period.  A total of 1576 hypertensive pa-

tients without T2D. 

A machine learning model included a homeostasis model assessment of 
insulin resistance, fibrinogen, and CRP. This model was more accurate 

than the logistic regression model, suggesting that inflammatory bi-
omarkers and HOMA-IR have a strong prognostic value in predicting 

progression to T2D. 

Ehtewish H et al. 
2022[31] Review 

CRP, tau protein, brain-derived neurotrophic factor (BDNF), advanced 
glycation end products, glycosylated hemoglobin, and adipokines were 

identified as predictive biomarkers for Cognitive Effects 
 

Indeed, significant strides have been made in identifying 
prognostic biomarkers for T2D, offering insights into disease 
mechanisms and potential avenues for personalized treat-
ment. Studies have increasingly integrated data from the vast 
sources of "omics," including metabolomics, genomics, pro-
teomics, lipidomics, and transcriptomics. Advanced compu-
tational techniques have been employed to analyze these 
large and significantly complex datasets. Computational 
modeling is exceedingly more efficient and effective than 
traditional statistics, in which the algorithm is trained to 
identify patterns and correlations within the data that may 
not otherwise have been apparent. Prognostic models have 
been developed using identified biomarkers to predict the 
risk of T2D onset, combining multiple biomarkers and clini-
cal parameters to enhance prediction accuracy. However, 
optimization of network-based approaches to understanding 
the interactions between different molecular components and 
pathways involved in T2D to provide insights into the under-
lying mechanisms of the disease and potential therapeutic 
targets is still in its infancy. Validating identified biomarkers 
in independent cohorts is a critical step to confirm their reli-
ability and relevance to enhance the credibility of the bi-
omarkers and their potential clinical utility. As such, the 
discovery of prognostic biomarkers contributes to the devel-
opment of personalized medicine strategies for T2D. The 
GATC base algorithm has integrated a multiomics platform 
to elucidate prognostic biomarkers for T2D. The novel 
GATC Health algorithms can be trained and optimized with 
muti-omic data derived from healthy and diseased patients, 
and a stepwise method for comparison of the ratios between 
causal biomarkers can afford a significant opportunity for 
altering the course of T2D.  

T2D is well suited for proteomics and lipidomic analysis 
studies since it is a complex metabolic disease with signifi-
cant contributions from proteins and lipid byproducts. 
Proteomic pathway analysis allows for the identification of 

altered protein expression patterns and provides insights into 
the signaling pathways involved in metabolic response. Most 
alterations occur at the protein level.  Thus, proteomics al-
lows the survey of simultaneous networks and an unbiased 
targeting of molecules. The networks and targeted molecules 
identified can then be applied to addiction, which has the 
potential for leveraging rigorous clinical application, accu-
rate sample quality control, robust analytical statistics, and 
adding validity to the observed protein expression changes. 

In the integration of algorithms of GATC, it is very likely 
that advanced bioinformatics will allow the simplification in 
the interpretation of mega-data sets and accelerate the identi-
fication of common underlying areas of physiological rele-
vance. T2D exerts multi-system adaptive physiologic re-
sponses in protein synthesis and function.  The resultant 
post-translational modifications comprise a crucial regulato-
ry step in promoting proteomic variability. There are several 
different cellular activities and processes in determining pro-
tein function.  However, the functional properties of the pro-
tein are fully determined by the collective attributes of the 
primary protein structure levels of expression and post-
translational modification. In addition, the capacity to local-
ize and target specific interactions with biological compo-
nents such as receptors, ligands, cofactors, nucleic acids, 
gluconeogenic and lipidomic metabolites, as well as proteins 
used to assemble macromolecular structures, plays a major 
role in determining the structure and functionality of various 
proteins.  

The rapid evolution of proteomics has highlighted the 
magnitude of changes in brain gene and protein expression 
induced by physiologic and psychological stressors. Further 
proteomics discovery allows for the inclusion of the synthe-
sis of a variety of enzymes, including (but not limited to) 
gluco, lipo and protein kinases, endo/exo-nucleases, ligases, 
phosphatases, proteases, and transferases. By identifying 
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differentially expressed proteins and analyzing their func-
tional annotations and interactions, we will gain a deeper 
understanding of the molecular mechanisms underlying the 
range of physiologic effects of each compound. Proteomic 
analysis facilitates the discovery of protein biomarkers asso-
ciated with response and treatment outcomes. By comparing 
protein expression patterns in patients who progressed to 
T2D with healthy samples, potential biomarkers indicative 
of treatment response, drug resistance, or adverse effects will 
be identified. This, in turn, can be further validated and po-
tentially used for patient stratification, monitoring treatment 
efficacy, or predicting therapeutic response. 

Similarly, significant evidence implicate lipid imbalances 
as not only predictors of T2D but also causal mediators. 
Given the apparent links between lipid biosynthesis, metabo-
lism and beta cell dysfunction lead to T2D. Since Minkow-
ski discovered glucosuria, the role of lipids in T2D has been 
collectively understudied. Herein, we encourage employing 
lipidomics as an effective approach to identify the myriad of 
lipid metabolites in relation to pre-T2D and progression to 
T2D. For building the prognostication model, GATC has 
integrated ML to select algorithms that are well-suited for 
handling complex and high-dimensional data, as is often the 
case with proteomics datasets. The AI model is tested with 
the training set, while the hyperparameters are tuned by the 
validation set, and the overall performance is assessed by the 
test set. The algorithm learns patterns and relationships with-
in the data that correlate with diabetes prognosis. The algo-
rithm has demonstrated reliable performance. As new prote-
omic data becomes available, GATC will continue to refine 
and update the AI algorithm to improve its accuracy and 
adapt to changing patient populations and disease character-
istics. In the long term, it is expected that the compounds 
proposed herein have the potential to be used for individual 
patients by identifying protein expression patterns and signa-
tures that may influence physiologic response. By character-
izing the proteomic profiles with T2D progression or 
maintenance of glucose regulation (controls), the research 
team can identify response-specific protein alterations that 
may guide treatment decisions and optimize future therapeu-
tic strategies.  The incorporation of the identified genomic, 
lipidomic and proteomic information has provided new in-
sight into the pathophysiology of T2D with studies of the 
biomarkers and T2D suggesting roles for proteins in the pro-
gression from pre-T2D to T2D.  

Lipidomic studies have also been shown to have the po-
tential to elucidate T2D prognostication by identifying 
changes in the key constituents of cellular membranes. Li-
pids, as the major form of cellular energy storage, are inte-
gral mediators of structural and cell signaling. Fatty acids 
metabolism encompasses mobilization from adipose tissue 
triglyceride stores requiring the activity of TG lipases that 
generate fatty acids.   

Eight major categories, encompassing over 80 major 
classes, 300 sub-classes, and thousands of lipid species, are 
represented by the lipidome. The various concentrations of 
components of the lipidome can be used to identify cellular 
physiology and pathophysiology. Fatty acids enter the 
bloodstream and are re-incorporated into triglyceride (TG) 
by hepatocytes. The lipidomic analysis allows an increased 

understanding of lipid metabolic pathways[32].  The well-
described lipid metabolic pathway begins with the re-
esterification of TG, which combines with apolipoprotein-B 
(APOB), resulting in the formation of very low-density lipo-
proteins (VLDL). VLDL enters the bloodstream under the 
regulation of microsomal TG transfer protein (MTTP) in 
conjunction with a neutral lipid core encapsulated by a phos-
pholipid (PL) monolayer. The PL is enriched in phosphati-
dylcholine (PC) molecules, which contain polyunsaturated 
fatty acids (PUFA).  Dysregulation of pathways in the syn-
thesis of arachidonic acid (AA; 20:4n-6) and docosahex-
aenoic acid (DHA; 22:6n-3) alters surface recognition of the 
VLDL-TG particle and, in turn, FA enters the liver from the 
adipose tissue.  The preferential oxidization of carbohydrates 
over fat is also dysregulated in T2D and uncouples hepatic 
TG synthesis from TG secretion, which is cytotoxic. A de-
cline in the concentration of several lipid metabolites (e.g., 
sphingolipids, TG, PL) is observed in the transition from 
pre-T2D to T2D.  The metabolic byproducts of lipids repre-
sent the core components of cell membranes.  Many of the 
metabolites are linked to T2D progression.  

The collective use of proteomic and lipidomic is a viable 
approach to determining the extent to which lipid biomarkers 
represent putative early-stage pathophysiological biomarkers 
for predicting and contributing to the progression of T2D. 
Untargeted lipidomics provide a possibility to analyze hun-
dreds to thousands of individual lipid species simultaneous-
ly. Lipids are a major part of the metabolome. However, 
their hydrophobicity necessitates the use of different meth-
ods from that for aqueous components of the metabolome. 
To date, the dominant platform in lipidomics is mass spec-
trometry (MS), often enhanced by interfacing desorption 
ionization techniques of atmospheric pressure ionization and 
matrix-assisted laser desorption/ionization (MALDI). En-
hancing MS with MALDI allows for conducting in thin-
layer chromatography (TLC) plates, in which MALDI –MS 
imaging has become the more frequently adopted technology 
in lipidomics, which can provide spatial information to lipid 
classes in tissues.  

The consistent elevation of blood glucose in T2D is often 
progressive in nature, frequently occurring secondary to the 
underlying metabolic changes.  The amalgamation of hyper-
glycemia, hyperinsulinemia, and cellular changes previously 
described increases the risk for disease development and 
multi-organ damage. Thus, discovery-based lipidomics rep-
resents an effective strategy for early prediction and the 
identification of adverse outcomes pathways associated with 
T2D. GATC has identified metabolic biomarkers of subse-
quent T2D (unpublished data). Dyslipidemia is a hallmark of 
T2D, yet specific lipid molecules closely associated with the 
initiation and progression of diabetes remain unclear. The 
targeted lipidomics approach can be used to evaluate the 
complex lipid changes that occurred long before the diagno-
sis of T2D and to identify novel lipid markers for screening 
pre-T2D and T2D. Beyond the conventional risk lipid-based 
factors linked to T2D and co-morbidities (i.e., plasma TG, 
total cholesterol (TC), small dense low-density lipoprotein 
cholesterol (LDL-C), and high-density lipoprotein cholester-
ol (HDL-C)), the particle size and mechanism by which the 
factors induce changes across the metabolome are less well-
established. The utility beyond that of conventional factors is 
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warranted, such as large individual differences in other alter-
native omics and the complexity of the pathophysiological 
mechanisms of T2D across the disease progression timeline. 
Accordingly, an enhanced understanding of the lipid-
mediated molecular and/or mechanistic pathways underlying 
T2D sequelae, especially for subtypes of pre-T2D, holds 
promise for developing innovative techniques to delay, re-
verse, or prevent gluco-dysregulation prior to clinical dis-
ease. 

Bioinformatic tools that integrate proteomic and lip-
idomic data, as in the GATC algorithm, can help identify 
pathways responsible for metabolite dysregulation and pro-
vide novel targets for treatment. Investigating T2D using a 
system biology approach by integrating the data collection 
proposed herein with other omics data in the GATC base 
algorithm can highlight a comprehensive metabolic network 
used as the basis of causal inference. As such, the overarch-
ing objective of validating the GATC base algorithm is to 
augment molecular understanding, identify potential thera-
peutic targets, and improve the prevention and management 
of T2D and its sequelae. Collectively, the establishment of a 
validated biomarker panel presents tremendous clinical utili-
ty.  The AI approach allows the focus to rest squarely on 
science. Understanding the physiology not only allows for 
early screening but expands the capacity to evaluate re-
sponse to specific medications, including elucidation of the 
extent to which drug development pathways can be used to 
identify individuals who may most appropriately respond 
physiologically relative to those who may not respond bio-
logically. In the context of T2D, improvement of prevention 
and risk stratification, in addition to maximization of the 
effectiveness of interventions and novel insights into the 
etiology, diagnosis, and prognosis of T2D are highly war-
ranted.  

GATC data scientists have the capacity to interrogate da-
ta, clean and preprocess the collected data to handle missing 
values, outliers, and inconsistencies, identify the most in-
formative and relevant features by applying techniques, such 
as statistical tests, correlation analysis, or dimensionality 
reduction methods to select or extract the features that con-
tribute the most to the prediction task. GATC scientists also 
have the capacity to divide the dataset into training, valida-
tion, and test sets. The training set is used to train the algo-
rithm, the validation set is used to fine-tune model parame-
ters and hyperparameters, and the test set is used to evaluate 
the final performance of the trained model. The algorithm 
learns the underlying patterns and relationships between the 
features and the target variable based on the provided exam-
ples. This involves optimizing the parameters of the model 
to minimize the prediction error.  The hyperparameters of 
the chosen algorithm are fine-tuned using the validation set. 
Hyperparameters are configuration settings that are not 
learned from the data but influence the performance of the 
model. Techniques such as grid search or random search can 
be employed to explore different combinations of hyperpa-
rameters and select the ones that yield the best performance.  
The model will be evaluated by applying the trained algo-
rithm to the test set and calculating performance metrics.   

To address the lack of predictive biomarkers, with 
enough discriminative power across the heterogeneity of the 
disease, GATC is leveraging a machine learning artificial 

intelligence multi-omics platform but requires further valida-
tion (Fig. 1).  

GATC will use the identified and validated biomarkers 
of T2D development prior to the onset of the disease. Subse-
quently, machine learning analysis augmented by proteomics 
and lipidomics will be used in the GATC base algorithm that 
can predict both the development of persistent concentration 
of the biomarkers with normoglycemia and T2D prior to the 
threshold elevation in HbA1c. We believe evaluation of these 
promising predictive in human cohorts could aid in the de-
velopment of prognostics and therapeutics. Bioinformatic 
tools that integrate proteomic and lipidomic data, as in the 
GATC algorithm, enhance opportunities for pathway identi-
fication that may underlie the dysregulation of metabolic 
parameters and elucidate novel targets for treatment.  

The platform of GATC serves to deepen molecular un-
derstanding, help identify potential therapeutic targets, and 
improve the prevention and management of T2D sequelae. 
Prevention and risk mitigation efforts for pre-T2D and T2D 
and complications reside in the capacity to maximize the 
beneficial effects of prevention and intervention efforts.  
Whereas the specifics of the process may vary depending on 
the data collected, the base GATC algorithm will have en-
zyme-linked immunosorbent assay (ELISA), proteomic, and 
lipidomic datasets integrated, including demographic data, 
medical history, lifestyle factors, and laboratory test results. 
GATC data scientists will clean and preprocess the collected 
data to handle missing values, outliers, and inconsistencies 
and identify the most informative and relevant features by 
applying techniques, such as statistical tests, correlation 
analysis, or dimensionality reduction methods to select or 
extract the features that contribute the most to the prediction 
task. Next, the GATC scientists will divide the dataset into 
training, validation, and test sets. The training set is used to 
train the algorithm, the validation set is used to fine-tune 
model parameters and hyperparameters, and the test set is 
used to evaluate the final performance of the trained model.  

The applicability and utility of promising biomarkers in 
clinical practice require demonstration of clinical utility and 
novel biomarkers to outperform currently available bi-
omarkers. While the theoretical basis for multi-marker pan-
els suggests increased prognostication relative to a single 
biomarker, such as HbA1c, an absolute prognostic value is 
still insufficient for clinical application. Rather than the sin-
gle biomarker approach, the development of biomarker pan-
els has been proposed to have greater potential for risk pre-
diction. Unfortunately, the high correlation between the pu-
tative biomarkers associated with disease states is still lack-
ing; thus, the predictive value of current biomarker panels is 
limited. A large panel of candidate biomarkers is widely 
known to play a role in inflammation, endothelial dysfunc-
tion, and vascular selection based on in vitro and in vivo 
studies[33]. However, the utility of such a panel is signifi-
cantly limited by the current inclusion of the well-described, 
yet population-limited biomarkers found associated with 
relevant outcomes in large longitudinal studies, even when 
considering confounders and/or additional risk factors. 
Twelve putative causal T2D biomarkers, thought to be in-
volved in early-stage progression of T2D, have been identi-
fied by the GATC team. Stepwise analysis of these bi-
omarkers with modern AI methods can afford a significant 
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opportunity for altering the clinical progression of T2D. The 
putative T2D causal biomarkers include glycated fructosa-
mine albumin (FA); proinsulin; misfolded proinsulin includ-
ing dimerization and trimerization; hemoglobin A1c; C-
reactive protein; Interleukin 18; Interleukin-1 receptor an-
tagonist; lipoxin A4; resolvin E1; resolvinD1; protectinD1 
and maresin1.  Unpublished results at GATC Health suggest 
comparison of the ratios of these serum biomarkers, in addi-
tion to understanding the relationships between lipid inter-
mediates and the proteome, may provide accurate early pre-
diction (1 to 5 years) of predisposition of an individual to 
T2D much earlier than elevated blood glucose and HBA1c. 
However, the uniqueness and novelty proposed herein reside 
in the longitudinal application of the banked serum samples 
obtained from 32 individuals diagnosed in the prediabetic 
state and samples from the same individuals following the 
onset of T2D symptoms.  Stepwise analysis of 12 putative 
causal biomarkers with modern AI methods can afford a 
significant opportunity for altering the clinical course and 
progression of T2D. Biomarkers include glycated fructosa-
mine; proinsulin; misfolded proinsulin; hemoglobin A1c; C-
reactive protein; Interleukin 18; Interleukin-1 receptor an-
tagonist; lipoxin A4; resolvin E1; resolvinD1; protectinD1, 
and maresin1.   

1.1. Hemoglobin A1c (HbA1c) 

It is reported as a percentage that represents the relative 
amount of glycohemoglobin- glucose attached to hemoglo-
bin. The HbA1c test also provides an algorithmic method of 
calculating the average level of blood sugar of patients over 
the past 121 days (i.e., the average lifespan of a red blood 
cell). The HbA1c test is routinely used by T2D patients to 
determine whether they need to adjust their diet and/or med-
ications[34]. This test can also be used to diagnose T2D in 
new patients but represents the average past blood glu-
cose[35].  Predicate HbA1c tests are in the market and are 

relatively expensive. HbA1c also has important limits as a 
prognostic tool. While progression to T2D in patients with 
elevated HbA1c is often likely, HbA1c may not accurately 
reflect the severity of the organ damage, including the kid-
ney and heart and when HbA1c reaches the threshold of 
6.5%, tissue damage has already ensued. Indeed, a value of 
less than 48mmol/mol (6.5%) does not exclude diabetes or 
the myriad of risks associated with poor glucose control.  
The heterogeneity of clinical presentation and manifestation 
across tissues has important prognostic implications. A pa-
tient without renal or cardiovascular damage and a patient 
with renal or cardiovascular damage can have an identical 
HbA1c, but their prognosis is dramatically different. Not-
withstanding, HbA1c represents one important biomarker in 
a comprehensive suite of predictive candidates[36].   

1.2. Misfolded Proinsulin 

It is of particular interest in this proposal because it can 
be an indicator of impaired beta cell function and insulin 
processing[37]. Endoplasmic reticular (ER) stress signaling 
may offer the potential to identify new drug targets to treat 
diabetes. ER, stress plays a significant role in diabetes path-
ogenesis and contributes to insulin resistance in the context 
of misfolded proinsulin. Misfolded proinsulin refers to the 
precursor form of insulin that has not properly folded into its 
functional structure. Proinsulin is synthesized in the beta 
cells of the pancreas and undergoes a series of enzymatic 
processing steps to convert it into mature insulin, which is 
then released into the bloodstream. In healthy individuals, 
proinsulin is efficiently converted into mature insulin, and 
only minimal amounts of unfolded proinsulin are present. 
However, in individuals with beta cell dysfunction or insulin 
resistance, the conversion process may be compromised, 
leading to increased levels of unfolded proinsulin, misfolded, 
dimerized or trimerized proinsulin, which in some cases is 
not able to cross into the extracellular matrix. Elevated levels 

 
Fig. (1). Leveraging multi-omics to enhance the AI algorithm of GATC for validation of putative causal biomarkers of T2D. (A higher 
resolution / colour version of this figure is available in the electronic copy of the article). 
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of unfolded proinsulin have been observed in individuals 
with impaired glucose tolerance, prediabetes, and early-stage 
T2D[38]. The constant demand for insulin prohormone in 
diabetics results in improper tertiary protein folding of the 
proinsulin during passage through the endoplasmic reticu-
lum. Critical disulfide bonds are not properly formed, result-
ing in reduced insulin production. Thus, the accumulation of 
unfolded proinsulin is a consequence of beta cell dysfunc-
tion, as the beta cells are unable to properly process and se-
crete insulin. Measuring unfolded proinsulin levels can pro-
vide insights into beta cell health and dysfunction[39]. 

1.3. Proinsulin 

It refers to the properly folded and processed precursor 
form of insulin. Proinsulin is synthesized in the beta cells of 
the pancreas and undergoes specific enzymatic cleavage to 
generate mature insulin, which is then released into the 
bloodstream. Correctly folded proinsulin is relevant as it 
reflects the normal functioning of beta cells and the efficient 
processing of proinsulin into mature insulin. In individuals 
with healthy beta cell function, most proinsulin is converted 
into mature insulin, and only minimal amounts of correctly 
folded proinsulin are present. However, in individuals with 
impaired beta cell function or insulin resistance, the conver-
sion process may be disrupted, leading to an imbalance be-
tween correctly folded proinsulin and mature insulin[12]. 
Analysis of data from patients as well as tissue samples, in-
dicates that processing of proinsulin is frequently reduced, 
and at an early stage in type 1 diabetes[40,41]. A recent 
study implicated cytokines as modulators in interactions 
between proinsulin and type 1 and T2D[42]. Alterations in 
the ratio of correctly folded proinsulin to mature insulin have 
been observed in various stages of T2D[40]. Increased levels 
of correctly folded proinsulin relative to mature insulin have 
been associated with impaired glucose tolerance and predia-
betes. The adaptive mechanisms as T2D progresses, additive 
result in the β-cell damage that cannot be restored, leading to 
chronic metabolic dysfunction, altering glucose metabolism, 
and leading to a decline in nutrient-regulated secretory func-
tions.  Metabolic dysfunction also impairs proinsulin pro-
cessing and, as a consequence, therefore, there is a deficit in 
mature insulin-containing secretory granules. This indicates 
a disruption in the processing of proinsulin, potentially re-
flecting beta cell dysfunction[43]. Measurement of the ratio 
of correctly folded proinsulin to mature insulin has been 
investigated as a potential marker for identifying risk for 
developing T2D or monitoring progression[44].  

1.4. Follistatin  

It is a protein that is naturally produced in the body and 
is expressed in almost all tissues belonging to the TGF-beta 
superfamily. Follistatin binds TGF-β family members, serv-
ing to neutralize the proteins. Follistatin is also essential for 
the growth and development of muscle fibers and is involved 
in the development of muscle fiber hypertrophy. As a bind-
ing protein for activins and myostatin[45], regulating various 
biological processes, follistatin is involved in the modulation 
of inflammation and has gained attention as a potential bi-
omarker due to its involvement in metabolic regulation and 
insulin sensitivity. Evidence suggests that follistatin has mul-
tiple auto- and paracrine functions in various tissues[46]. 

Follistatin is thought to influence glucose metabolism by 
modulating the action of insulin and signaling pathways, 
such that higher levels of follistatin are associated with insu-
lin resistance, impaired glucose tolerance, and increased risk 
of developing T2D. Serum follistatin has been suggested as a 
predictive biomarker in gestational diabetes [47,48]. Con-
versely, lower levels of follistatin have been correlated with 
improved insulin sensitivity and better glucose control. Thus, 
measuring follistatin levels serves as a biomarker for identi-
fying individuals at risk of developing diabetes or monitor-
ing disease progression[45]. 

1.5. C-Reactive Protein (CRP)  

While it is important to consider CRP as a useful marker 
of low-grade inflammation, it is not specific to T2D.  How-
ever, chronic low-grade inflammation plays a crucial role in 
the development and progression of T2D. Increased levels of 
CRP have been observed in individuals with obesity, insulin 
resistance, and T2D, with an inextricable link between im-
paired insulin sensitivity and inflammation. Longitudinal 
studies have shown that elevated CRP levels in apparently 
healthy individuals are associated with an increased risk of 
developing T2D later in life [49], suggesting CRP is a poten-
tial prognostic biomarker among individuals who are at a 
higher risk of developing the disease and may benefit from 
preventive interventions. Further, in the context of the con-
comitant cardiovascular complications in T2D, CRP has 
been established as a strong predictor of cardiovascular 
events in individuals with T2D[50]. Monitoring CRP levels 
can also facilitate evaluation of treatment response/self-
management in individuals with T2D. Monitoring changes in 
CRP levels can provide valuable insights into the effective-
ness of therapeutic interventions in managing T2D and asso-
ciated complications. 

1.6. Interleukin 18 (IL-18) 

It is a pro-inflammatory cytokine. The pathogenesis of 
various inflammatory diseases, including T2D, has been 
linked to IL-18[51]. While the role of IL-18 is still being 
elucidated, evidence suggests its involvement in the progres-
sion of T2D. IL-18 has been shown to promote inflammation 
in both adipose tissue and skeletal muscle, leading to the 
disruption of insulin signaling pathways and subsequent in-
sulin resistance. Additionally, IL-18 has been implicated in 
the impairment of pancreatic beta-cell function, which fur-
ther contributes to the development and progression of T2D. 
IL-18 levels are elevated in obese individuals, particularly 
those with visceral adiposity. Adipose tissue produces and 
releases IL-18, and its increased secretion in obesity contrib-
utes to a state of chronic inflammation, promoting insulin 
resistance and impairing glucose metabolism. Elevated IL-18 
levels represent an independent contributor to the risk of 
cardiovascular events [52]. 

1.7. Interleukin 1 (IL-1Ra) 

It is a naturally occurring protein that competitively in-
hibits the actions of interleukin 1 (IL-1), a pro-inflammatory 
cytokine. IL-1 plays a role in promoting inflammation and 
impairing insulin signaling. IL-1Ra acts as an endogenous 
inhibitor of IL-1, counteracting its effects and reducing in-
flammation. By modulating the inflammatory response, IL-
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1Ra may help improve insulin sensitivity and mitigate the 
progression of insulin resistance in T2D. Whereas IL-1 can 
exert detrimental effects on beta-cells, leading to impaired 
insulin secretion and increased beta-cell apoptosis, IL-1Ra 
counteracts these effects by blocking IL-1R and protecting 
beta-cells from the damaging effects of IL-1. By preserving 
beta-cell function and survival, IL-1Ra may help maintain 
adequate insulin production and contribute to glycemic con-
trol. Several clinical trials have investigated the therapeutic 
potential of IL-1Ra[53,54].  

1.8. Glycated Fructosamine Albumin (FA) 

Glycated Fructosamine Albumin (FA) in circulation in-
cludes all the stable ketoamines in circulation. FA is pro-
duced through the non-enzymatic glycation of circulating 
serum proteins (albumins, globulins, and other minority pro-
teins). In T2D, the concentration of circulating FA increases 
due to the increased glycation products due to impaired glu-
cose regulation in the blood.  Elevated FA levels have also 
been implicated as causal in the incidence of vascular com-
plications associated with T2D, and high FA levels indicate 
a more aggressive disease progression. As such, FA reflects 
glucose control. Unlike HbA1c, FA reflects glucose dysregu-
lation over a two-to-three-week period[55].   

1.9. Lipid Mediators 

They are long-chain polyunsaturated fatty acids that play 
a well-established role in modulating the inflammatory cas-
cade as well as contributing to peripheral glucose uptake and 
insulin response. More recent mechanistic investigations 
have revealed glucose regulatory involvement is at least in 
part related to specialized pro-resolving lipid mediators 
(SPMs), resolvins, maresins, and protectins. 

1.10. Lipoxin A4 (LXA4) 

It is a SPM made from arachidonic acid (AA).  As a part 
of the AA pathway, LXA4 plays a role in the resolution of 
inflammation and the regulation of immune responses.  
LXA4 has been shown to have anti-inflammatory properties, 
inhibiting the production of pro-inflammatory molecules and 
promoting the resolution of inflammation, plausibly mitigat-
ing processes associated with insulin resistance and beta-cell 
dysfunction. LXA4 has been shown to preserve beta-cell 
mass and function[56], thereby delaying progressive pancre-
atic decline and/or delaying the need for exogenous insulin. 

1.11. Resolvin E1 (RvE1) and Resolvin D1 (RvD1):  

They are SPMs derived from eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA), respectively. Pro-
tectin D1 (PD1) and Maresin 1 (MaR1) are SPMs derived 
primarily from DHA.  The SPMs are involved in the resolu-
tion of inflammation and the regulation of immune respons-
es, with potent anti-inflammatory actions, counteracting the 
inflammatory processes associated with insulin resistance 
and beta-cell dysfunction. RvE1 has shown potential in en-
hancing insulin sensitivity in various target tissues, such as 
adipose tissue and skeletal muscle [57]. RvE1 and RvD1 
have also been shown to have beneficial effects on lipid me-
tabolism by reducing triglyceride levels, improving high-
density lipoprotein (HDL) cholesterol function, and promot-

ing lipid clearance. These lipid-modulating properties of 
RvE1 may have implications for managing cardiovascular 
risk factors associated with T2D. PD1 has been found to 
modulate lipid metabolism by reducing triglyceride levels 
and promoting lipid clearance[58]. 

Augmenting the utility of the base algorithm of GATC 
with the addition of these 12 identified putative causal bi-
omarkers for T2D allows the algorithm to capture a broader 
range of biological signals, leading to a more accurate and 
comprehensive predictive model, improving the ability of 
the algorithm to identify individuals at risk of developing the 
disease. As different individuals may have varying levels of 
risk for developing T2D based on their biomarker profiles, 
incorporating multiple biomarkers, the algorithm can stratify 
individuals into different risk categories, enabling targeted 
interventions and personalized treatment strategies. Further, 
the use of these evidenced-based multiple biomarker strate-
gies provides valuable insights into the underlying biological 
mechanisms. Enhancing the GATC algorithm with proteo-
mic and lipidomic data allows greater capacity to analyze 
how these biomarkers interact and contribute to disease pro-
gression can enhance our understanding of the complex 
pathways involved in the condition. Incorporating these 12 
identified putative causal biomarkers increases the likelihood 
of the validity and reproducibility of the algorithm. It be-
comes easier to replicate the findings in independent da-
tasets, which is essential for building trust in the predictive 
model. For monitoring the progression or treatment response 
in individuals, a panel of biomarkers can provide a more 
comprehensive assessment of how the disease is changing 
over time or how it responds to interventions increasing the 
chances early detection, providing an opportunity for timely 
intervention to prevent or delay the onset of the disease with 
adaptability to changes in our understanding of the disease. 
As new research identifies additional relevant biomarkers or 
refines the list of causal factors, the model can be updated 
without significant restructuring. Indeed, a robust algorithm 
based on 12 biomarkers can serve as a valuable clinical deci-
sion support tool, however, it is important to note that while 
using a panel of biomarkers has significant advantages, the 
quality of the biomarkers, the size and diversity of the train-
ing dataset, proper validation, and integration into clinical 
practice are crucial factors that determine the success of such 
an algorithm. GATC leverages collaborations between bi-
omarker researchers, data scientists, and healthcare providers 
to realize the full potential of predictive models based on 
these biomarkers. The algorithm learns the underlying pat-
terns and relationships between the features and the target 
variable (T2D) based on the provided examples. This in-
volves optimizing the parameters of the model to minimize 
the prediction error.  The hyperparameters of the chosen 
algorithm(s)are fine-tuned using the validation set. Hyperpa-
rameters are configuration settings that are not learned from 
the data but influence the model's performance. Techniques 
such as grid search or random search can be employed to 
explore different combinations of hyperparameters and se-
lect the ones that yield the best performance.  These metrics 
provide insights into the predictive ability and generalization 
of the algorithm to unseen data. If the model performance is 
unsatisfactory, iterate on the previous steps by adjusting the 
feature selection, trying different algorithms, or modifying 
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hyperparameters until a satisfactory performance is 
achieved. Once the model is deemed satisfactory, it can be 
deployed in real-world scenarios for diabetes prediction. 
Ongoing monitoring and validation may be necessary to en-
sure that the performance of the model remains reliable over 
time and to address any potential biases or limitations that 
may arise. 

A large panel of candidate biomarkers is widely known 
to play a role in inflammation, endothelial dysfunction, vas-
cular selected based on in vitro and in vivo studies 
[58,33,59].  The uniqueness and novelty proposed herein 
resides in the longitudinal application of the banked serum 
samples obtained from 32 individuals diagnosed in the pre-
diabetic state and samples from the same individuals follow-
ing the onset of T2D symptoms.  Stepwise analysis of 12 
putative causal biomarkers with modern AI methods can 
afford a significant opportunity for altering the clinical 
course and progression of T2D. ELISA is used to measure 
and quantify analyte levels. Serum samples were banked 
from 32 healthy, aged-matched non-T2D controls. While the 
theoretical basis for multi-marker panels suggested increased 
prognostication relative to a single biomarker such as 
HbA1c, absolute prognostic value is still insufficient for 
clinical application. 

The identical serum samples used in the ELISA study 
will be used to measure protein levels in the 96 serum sam-
ples to elucidate changes in protein expression and modifica-
tions in the progression of pre-to T2D state, compared to 
healthy control individuals. The analysis will involve a shot-
gun approach that integrates measurements of 16 classes of 
lipids, with subsequent calculation of maresin, protectin, and 
lipoxin.  By identifying differentially expressed proteins and 
analyzing their functional annotations and interactions, we 
will gain a deeper understanding of the molecular mecha-
nisms underlying the range of physiologic effects of each 
compound. Proteomic analysis will also be used to facilitate 
the discovery of protein biomarkers associated with response 
and treatment outcomes. By comparing protein expression 
patterns in T2D progressed and healthy samples, potential 
biomarkers indicative of treatment response, drug resistance, 
or adverse effects will be identified, which in turn can be 
further validated and potentially used for patient stratifica-
tion, monitoring treatment efficacy, or predicting therapeutic 
response. In the long term, it is expected that the compounds 
proposed herein will serve as a foundation for the potential 
for personalized medicine by identifying patient-specific 
protein expression patterns and signatures that may influence 
drug response. By characterizing the proteomic profiles with 
T2D progression or maintenance of glucose regulation (con-
trols), the research team can identify response-specific pro-
tein alterations that may guide treatment decisions and opti-
mize future therapeutic strategies.  

CONCLUSION 
Using AI for identifying predictive biomarkers for type 2 

diabetes offers several potential benefits that can significant-
ly impact the understanding, diagnosis, and management of 
the disease. The GATC algorithm can efficiently analyze 
large and complex datasets, including genetic, genomic, and 
clinical data, enabling our interdisciplinary team to identify 
patterns and correlations that may be challenging for tradi-

tional methods to uncover, as well as identify subtle patterns 
and relationships in data that may serve as early indicators 
for proactive intervention, potentially preventing the devel-
opment or progression of the disease. The potential for the 
development of personalized treatment plans by considering 
individual variations in genetics, lifestyle, and other factors 
can lead to more targeted and effective interventions, opti-
mizing patient outcomes via the integration of information 
from various sources.  The GATC algorithm excels at identi-
fying complex patterns and interactions within these factors, 
providing a deeper understanding of the underlying mecha-
nisms of the disease. 

AI can aid in the identification of potential drug targets 
and the development of new therapies. By understanding the 
molecular pathways involved in T2D, we enhance our capac-
ity to leverage specific biomarkers for drug discovery, poten-
tially leading to more effective and targeted treatments. Fur-
ther, AI-powered tools, such as the GATC algorithm, can 
enable continuous monitoring of patients, allowing for real-
time adjustments to treatment plans based on dynamic 
changes in biomarkers and other health parameters. The 
comprehensive approach presented herein can accelerate 
progress in understanding T2D  and holds great promise in 
revolutionizing our approach to the disease, from early de-
tection to personalized treatment and ongoing management. 

LIST OF ABBREVIATIONS 

ADA = American Diabetes Association 
AI = Augmented Intelligence 
APOB = Apolipoprotein B 
AUC-ROC = Area Under the Receiver Operating 

Characteristic Curve 
CRP = C-Reactive Protein 
DHA = Docosahexaenoic Acid 
DL = Deep Learning 
ELISA = Enzyme-linked Immunosorbent Assay 
FA = Glycated Fructosamine Albumin 
FBG = Fasting Blood Glucose 
FDA = Food and Drug Administration 
HbA1c = Hemoglobin A1c (Glycated Hemoglo-

bin) 
HDL = High-Density Lipoprotein Cholesterol 
HOMA-IR = Homeostatic Model Assessment for 

Insulin Resistance 
IDF = International Diabetes Federation 
IFG = Impaired Fasting Glucose 
IL = Interleukin 
LC = Liquid Chromatography 
LDL = Low-Density Lipoprotein Cholesterol 
MALDI = Matrix-Assisted Laser Desorption/ Ion-

ization 
ML = Machine Learning 
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MTTP = Microsomal TG Transfer Protein 
NP = Natriuretic Peptide 
PL = Phospholipid 
PUFA = Polyunsaturated Fatty Acids 
RCT = Randomized Control Trial 
SPM = Specialized Pro-Resolving Lipid Medi-

ators 
T2D = Type 2 Diabetes 
TLC = Thin-layer Chromatography 
TNF = Tumor Necrosis Factor 
TG = Triglyceride 
TyG = Triglyceride Glucose Index 
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