
Linera: a Blockchain Infrastructure for

Highly Scalable Web3 Applications

Version 2 – August 16, 2023

Abstract

We present Linera, a blockchain infrastructure that aims to support the most de-
manding Web3 applications by providing them with predictable performance, security,
and responsiveness at the Internet scale. To do so, Linera solves the blockspace scarcity
problem by introducing a new, integrated, multi-chain paradigm built upon elastic val-
idators. Linera puts users at the center of the protocol by allowing them to manage
the production of blocks in their own chains—called microchains—for optimal per-
formance. To help Web3 developers make the most of the Linera infrastructure, we
have developed a rich, language-agnostic, multi-chain programming model. Linera ap-
plications communicate across chains using asynchronous messages. Within the same
microchain, applications are composed using synchronous calls and ephemeral sessions
(aka resources). The initial SDK of Linera will target Rust programmers, thanks to
the Wasm virtual machine. The Linera infrastructure is based on delegated proof of
stake. It will ensure robust decentralization using state-of-the-art economic incentives
and auditing at scale by the community. 1

1Legal Disclaimer: This document and its contents are not an offer to sell, or the solicitation of an offer
to buy, any tokens. We are publishing this white paper solely to receive feedback and comments from the
public. Nothing in this document should be read or interpreted as a guarantee or promise of how the Linera
infrastructure or its tokens (if any) will develop, be utilized, or accrue value. Linera only outlines its current
plans, which could change at its discretion, and the success of which will depend on many factors outside
of its control. Such forward-looking statements necessarily involve known and unknown risks, which may
cause actual performance and results in future periods to differ materially from what we have described or
implied in this document. Linera undertakes no obligation to update its plans. There can be no assurance
that any statements in the document will prove to be accurate, as actual results and future events could
differ materially. Please do not place undue reliance on future statements.

1

Contents

1 Introduction 3
1.1 The need for predictable performance and responsiveness in Web3 3
1.2 The blockspace scarcity problem . 3
1.3 Shortcomings of existing approaches . 3
1.4 Our mission . 4
1.5 Overview of the project . 4

1.5.1 An integrated multi-chain system with elastic validators 5
1.5.2 Making multi-chain programming mainstream 5
1.5.3 Robust decentralization for elastic validators 6

2 The Linera Multi-Chain Protocol 6
2.1 Participants: users, validators, chain owners 6
2.2 Security model . 7
2.3 Notations . 8
2.4 Microchains . 8
2.5 Cross-chain requests . 10
2.6 Chain states . 10
2.7 Block execution . 11
2.8 Client/validator interactions . 12
2.9 Extensions to the core protocol . 13

3 Analysis of the Multi-Chain Protocol 15
3.1 Responsiveness . 15
3.2 Scalability . 15
3.3 Security . 16

4 Building Web3 Applications in Linera 18
4.1 Creating applications . 18
4.2 Multi-chain deployment . 19
4.3 Cross-chain communication . 19
4.4 Local composability . 20
4.5 User authentication . 20
4.6 Ephemeral chains . 21

5 Decentralization 21
5.1 Delegated proof of stake . 21
5.2 Auditability . 21

6 Conclusion 22

A Cross-chain communication 28
A.1 Messages and inboxes . 28
A.2 Cross-chain requests and outboxes . 29

2

1 Introduction

1.1 The need for predictable performance and responsiveness in Web3

Thanks to blockchain technologies, the next iteration of the Internet, Web3, will empower
users with a new generation of asset-aware applications and give them more democratic
control over the digital economy. However, developing Web3 applications with a great user
experience is currently a challenging task. One of the issues is reliability and responsive-
ness at scale: when too many users are active, blockchains may stop responding or demand
punishing fees. In general, application developers want their infrastructure programming
interfaces to be easy to use and predictable, disregarding the traffic caused by other ap-
plications. Centralized API providers [30] have been proposed to facilitate programming
on top of popular blockchains, but such providers need to be trusted and will not improve
the performance and the fees of the underlying blockchains. Linera aims to close the gap
between centralized and decentralized applications by delivering a blockchain infrastructure
that guarantees performance and responsiveness at scale.

1.2 The blockspace scarcity problem

The main reason why traditional blockchains have unpredictable worst-case outcomes in
terms of fees and delays can be explained as the blockspace scarcity problem. Namely,
in a blockchain composed of a single chain of blocks, users must compete to have their
transactions selected into the next block. Yet, at the same time, the production rate and
the size of blocks are limited by the performance of the consensus protocol, the network, and
the execution layer. As a result, during a peak of traffic (say, an NFT airdrop), users may be
outpriced by others or be delayed for long periods of time—during which the infrastructure
is effectively unavailable to them [21].

1.3 Shortcomings of existing approaches

Unsurprisingly, many blockchain infrastructures have been proposed over the years with
scalability improvements in mind. We provide here a high-level summary of the most
common approaches, without attempting to be exhaustive.

Faster single chain. The production rate of blocks in a single chain is typically limited
by the data propagation delay between validators [18]. Historically, block size has been
the first parameter to be adjusted to maximize transaction throughput in function of the
security requirements and the network constraints [18, 20]. Thanks to recent advances in
BFT consensus protocols (e.g. [22]), nowadays the new bottleneck for the transaction rate
appears to be the sequential execution of transactions rather than consensus ordering.

Anticipating that many transactions contained in a block should be independent in
practice, several recent projects have developed architectures able to execute a subset of
transactions in parallel on several processing units [19]. While this certainly results in higher
transaction rates, such systems are still characterized by a maximum number of transactions
per second in the low 6 digits. Moreover, the effective transaction rate greatly depends on
the proportion of transactions that are actually independent in each block [26]. Altogether,
this makes it impossible to guarantee fees and/or delays in advance for a user without any
assumption about the activity of the other users.

Lastly, in a high-throughput chain, auditing validators is made harder by the combi-
nation of CPU requirements for execution and networking requirements for data synchro-
nization. Concretely, the sheer number of sequential transactions may prevent members of

3

the community with only commodity hardware from replaying transactions fast enough to
verify the work of validators in a meaningful way [24].

Blockchain sharding. Another popular direction to address blockchain scalability has
consisted in dividing the execution state between a fixed number of parallel chains, each
being run independently by a separate set of validators. This is called blockchain sharding.

While this approach is still being continuously improved, it has historically suffered from
several challenges. First, using separate sets of validators creates a security tradeoff in so
far as an attacker may selectively attack the weakest set in the system (e.g. to mint coins).
Second, reorganizing the shards, i.e. the way user accounts are distributed across chains,
is a complex operation that necessitates extensive network communication [33]. Lastly,
when the number of shards is increased to support additional traffic, so does the amount
of cross-chain messages that need to be exchanged [26]. In a system where each shard has
a separate set of validators, cross-chain messages create significant delays that ultimately
cancel out the effect of adding new chains [31,33].

Rollups. Finally, a popular approach to solve blockspace scarcity has been rollup proto-
cols, either optimistic or based on validity proofs (aka ZK rollups) [11]. At a high-level, both
optimistic and validity (“ZK”) rollups consist of a layer-2 protocol that builds a sequence
of large blocks, meant to be executed, compressed and confirmed on layer 1. Unfortunately,
the process of confirming transactions on layer 1 takes a long time in both cases. Opti-
mistic rollups must wait several days to allow for dispute resolution. Validity rollups must
compress many layer-2 transactions at a time to pay for the layer-1 gas. In practice, gath-
ering enough layer-2 transactions, computing a validity proof, and archiving transactions
to enforce rigorous data availability takes several hours per layer-2 block.

Long layer-1 confirmation times may encourage certain users to accept a security tradeoff
and trust the finality of layer 2 for certain applications. In general, rollups must be trusted
to carry on the protocol (i.e. for liveness) and to select transactions fairly (see Miner
Extractable Value [15]). This concern is visible in the recent efforts to design decentralized
rollup protocols [29].

1.4 Our mission

Motivated by these observations, the Linera project was created to develop a new type of
Web3 infrastructure based on three key principles:

(i) Build a secure infrastructure with predictable performance and responsiveness — by
operating many chains in a single set of elastic validators;

(ii) Enable a rich ecosystem of scalable Web3 applications — by working on a new execu-
tion layer to make multi-chain programming mainstream;

(iii) Maximize decentralization — by ensuring that elastic validators are optimally incen-
tivized and audited at scale by the community.

1.5 Overview of the project

Linera is dedicated to delivering the following innovations to the blockchain community.

4

1.5.1 An integrated multi-chain system with elastic validators

To fulfill our vision of a Web3 infrastructure with predictable performance and responsive-
ness at scale, we have developed a new multi-chain protocol designed to take advantage of
modern cloud infrastructures:

(1) In Linera, a validator is an elastic Web2-like service that validates and executes blocks
of transactions in many chains in parallel. Because the number of chains (active and
inactive) present in a Linera system is meant to be unlimited, we also call them mi-
crochains.

(2) The task of actively extending a microchain with new blocks is separate from validation
or execution and is assumed by the owner(s) of each chain. Every Linera user is
encouraged to create a chain that they own and place their accounts there.

(3) Every validator manages all the microchains. (We call this the integrated multi-chain
approach.) Microchains interact using asynchronous messages and otherwise run in-
dependently. As a result, validators can scale elastically by dividing their workload
between many internal workers (aka shards). Asynchronous messages between chains
are implemented efficiently using the internal network of each validator.

(4) Microchains may differ in the way they accept new blocks. When extending their own
chains, users submit new blocks directly to validators using a low-latency, mempool-free
protocol inspired by reliable broadcast [7, 12]. Applications that require more complex
interactions between users may also rely on ephemeral microchains created on demand.
In practice, only the public microchains owned by the Linera infrastructure necessitate
a full BFT consensus protocol [12].

(5) As a rule, validators do not interact—except for public chains owned by the infrastruc-
ture. Synchronization of microchains between validators is delegated to chain owners.
This means that inactive microchains (those not creating blocks) have no cost for val-
idators other than storage.

Using elastic validators is a distinctive assumption of Linera. We intend for the Linera
community to support a variety of cloud providers that new validators can choose from. Lin-
era was initially inspired by the academic low-latency payment protocol FastPay developed
at Meta [7]. Linera generalizes FastPay notably by turning user accounts into microchains,
adding smart contracts, and supporting arbitrary asynchronous messages between chains.
A more detailed description of the Linera multi-chain protocol is given in Section 2. We
analyze the protocol in Section 3.

1.5.2 Making multi-chain programming mainstream

Linera integrates many chains in a unique set of validators. This greatly facilitates cross-
chain communication thanks to the internal network of each validator. For the first time, a
variety of Web3 applications have the opportunity to scale elastically by taking advantage
of a cheap and efficient multi-chain architecture. To promote the adoption of multi-chain
programming, we have made the following design choices:

(6) The execution model of Linera is designed to be language-agnostic and developer-
friendly. The initial SDK of Linera will be based on Wasm and will target the Rust
programming language.

5

(7) Linera applications are composable and multi-chain. Once an application is created,
it can run on demand on any chain. The running instances of the same application
coordinate across chains using asynchronous messages and pub/sub channels. Applica-
tions that are running in the same microchain interact using cross-contract calls and
ephemeral session objects.

Session objects in Linera are inspired by resources in the Move language [9]. Statically-
typed resources in Move have been proposed to help with composability [25]. In Linera,
resource-like composability is achieved using session handles and runtime checks. For in-
stance, to send tokens, a Linera contract will be able to transfer ownership of a temporary
session containing the tokens.

In general, building a large community of developers is a major factor in the adoption
of blockchain infrastructures. Because the Wasm ecosystem is continuously improving its
multi-language tooling [4], it offers the long-term possibility for Linera to serve several
developer communities. See Section 4 for a more detailed discussion of the programming
model of Linera.

1.5.3 Robust decentralization for elastic validators

The classical “blockchain trilemma” [10] asserts the difficulty of simultaneously achieving
scalability, security, and decentralization. While this observation certainly holds for valida-
tors of fixed capacity, we believe that insufficient efforts have been made in the definition
and implementation of a satisfying notion of decentralization for elastic validators.

(8) Linera relies on delegated proof of stake (DPoS) for security and supports regularly
changing sets of validators. Thanks to the chaining of blocks, the past transactions, the
cross-chain messages, and the execution state of each microchain are tamper-resistant.

(9) Microchains are designed to be auditable independently. This means that Linera as a
whole will be auditable in a distributed way by the community, using only commodity
hardware.

Using large validators for performance and maintaining decentralization using community-
driven auditors has been discussed by the blockchain community in the context of rollups [10].
As the Linera project makes progress, we will continue to monitor the technical advances
in the field of validity (“ZK”) proofs and chain compression. Decentralization of Linera is
further discussed in Section 5.

2 The Linera Multi-Chain Protocol

We now introduce the multi-chain protocol at the core of the Linera infrastructure. This
technical description is meant to illustrate the main ideas of the protocol without being
exhaustive. We analyze the protocol informally in Section 3 and discuss the programming
model in Section 4.

2.1 Participants: users, validators, chain owners

The Linera protocol aims to provide a computing infrastructure where developers create
decentralized applications and end users interact with them in a secure and efficient way.

As usual for blockchain systems, the state of an application in Linera is replicated across
several partially-trusted nodes called validators. Modifying the state of an application is

6

done by inserting a transaction into a new block and submitting the new block to the
validators.

To support scalability requirements, Linera is designed from the start as an integrated
multi-chain system: instead of using a single chain, transactions are organized in many par-
allel chains of blocks, called microchains. This means that the state of Linera applications
is typically distributed across chains. Importantly, unless a reconfiguration is in progress
(Section 2.9), a single set of validators is in use for all the microchains.

In Linera, the task of extending a chain with new blocks is separate from the task of
validating blocks. Proposing blocks is assumed by the owners of a microchain. In practice,
the owner(s) of a chain can be any participant to the protocol. Because Linera validators
act as a block validation service, chain owners may also be referred to as clients. Examples
of chain owners include:

• End users who wish more control over their accounts in different applications;

• End users who wish to operate a temporary chain (e.g. for an atomic swap);

• Developers who wish to publish code or manage applications;

• Validators who collectively run a public chain (e.g. for infrastructure purposes).

The last use case is how Linera manages the current set of validators, also known as the
committee. The programming model of Linera is presented in Section 4. The additional
role of auditors is discussed in Section 5.

2.2 Security model

Linera is designed to be Byzantine-Fault Tolerant (BFT) [13]. All participants generate a
key pair consisting of a private signature key and the corresponding public verification key.
Linera uses a delegated proof of stake (DPoS) model [28], where the voting power of each
validator is bound to its stake and the stake delegated to it by users.

Assumptions. We present the Linera protocol for a total voting power of N . A fixed,
unknown subset of Byzantine (aka dishonest) validators may deviate from the protocol. It
is assumed that they control at most f voting power for some value f such that 0 ≤ f < N

3 .
This is similar to many BFT protocols [7, 13]. In practice, one chooses the largest possible
value for f , namely f = bN−13 c.

We do not make any assumptions about users, chain owners, or on the networking
layer when it comes to safety properties. Unless specified otherwise, liveness properties
do not depend on network delays or message ordering. In other words, the network is
asynchronous [13].

We use the word quorum to refer to a set of signatures issued by validators with a
combined voting power of at least N − f . An important property of quorums, called
quorum intersection, is that for any two quorums, there exists an honest validator α that
is present in both. When data (typically a block) is signed by a quorum of validators, it is
said to be certified. Certified data is also called a certificate for short.

Goals. Linera aims to guarantee the following security properties:

• Safety: For any microchain, every validator sees (a prefix of) the same chain of blocks,
therefore it applies the same sequence of modifications to the execution state of the
chain and eventually delivers the same set of messages to the other chains.

• Eventual consistency of chains: If a microchain is extended with a new certified block
on an honest validator, any user can take a series of steps to ensure that this block is
added to the chain on every honest validator.

7

• Eventual consistency of asynchronous messages: If a microchain receives a cross-chain
message on an honest validator, any user can take a series of steps to ensure that this
message is received by the chain on every honest validator.

• Authenticity: Only the owner(s) of a microchain can extend their microchain.

• Piecewise Auditability: There is sufficient public cryptographic evidence for the state
of Linera to be audited for correctness in a distributed way, one chain at a time.

For single-owner chains (Section 2.4), Linera also guarantees the following properties:

• Monotonic block validation: In a single-owner chain, if a block proposal is the first
one to be signed by the owner at a given block height and it is accepted by an honest
validator, then with appropriate actions, the chain owner always eventually succeeds
in gathering enough votes to produce a certificate.

• Worst-case Efficiency: In a single-owner chain, Byzantine validators cannot signifi-
cantly delay block proposals and block confirmations by correct users.

2.3 Notations

We assume a collision-resistant hash function, noted hash(·), as well as a secure public-key
signature scheme sign[.]. A quorum of signatures on a block B forms a certificate noted
C = cert[B]. In the rest of this report, we identify certificates on the same block B and
simply write C = cert[B] when C is any certificate on B.

The state of the Linera system is replicated across all validators. For a given validator,
noted α, we use the notation X(α) to denote the current view of α regarding some replicated
data X. A data type D = 〈Tag, arg1, . . . , argn〉 is a sequence of values starting with a distinct
marker Tag and meant to be sent over the network. We use capitalized names to distinguish
data type markers from mathematical functions (e.g. hash) or data fields (e.g. ownerid(α)),
and simply write Tag(arg1, . . . , argn) for a data type. We write D̃ for a sequence of data
types (D1, . . . Dn).

2.4 Microchains

The main building blocks of the Linera infrastructure are its microchains. A microchain (or
simply chain for short) is similar to a regular blockchain in the sense that it is made of a
chain of blocks, each containing a sequence of transactions. Importantly, Linera separates
the role of proposing new blocks (chain owners’ role) from validating them (validators’ role).
The protocol to extend a chain is configurable and depends on the type of the chain.

Chain identifiers. A microchain is represented by an identifier id designed to be non-
replayable. Specifically, a unique identifier (or simply identifier) is a non-empty sequence
of numbers written as id = [n1, . . . , nk] for some 1 ≤ k ≤ kmax. We use :: to denote the
concatenation of one number at the end of a sequence: [n1, . . . , nk+1] = [n1, . . . , nk] :: nk+1

(k < kMAX). In this example, we say that id = [n1, . . . , nk] is the parent of id :: nk+1.
A Linera system starts with a fixed set of microchains defined in the genesis configura-

tion. To create a new chain, the owner of an existing chain must execute a chain-creation
transaction. The new identifier is computed as the concatenation of the parent identifier
and the index of the transaction creating the new chain.

Chain types. Linera supports three types of microchains:

(i) Single-owner chains where only one user (as identified by its public key) is authorized
to propose blocks;

8

(ii) Permissioned chains where only a well-defined set of cooperating users are authorized
to propose blocks;

(iii) Public chains where validators propose blocks.

In all three cases, the agreement between validators regarding the next block B of a
chain is represented in fine by a certificate C = cert[B]. In the case of a single-owner
chain, the production of the certificate C is inspired by reliable broadcast [7,12] and will be
described in detail in Section 2.8. In the case of public chains, the certificate C is a proof
of commit produced by a classical BFT consensus protocol between validators. The case
of permissioned chains and public chains is sketched in Section 2.9. For simplicity, unless
mentioned otherwise, the rest of this report focuses on single-owner chains.

Every chain includes a field ownerid(α) to authenticate their owner(s), if any. We write
ownerid(α) = pk when the chain has a single owner authenticated by the public-key pk.
Permissioned chains have ownerid(α) = {pk1, . . . , pkn} and public chains ownerid(α) = ?.
When ownerid(α) = ⊥, the chain is said to be inactive.

Chain lifecycle. Any existing chain can create a new microchain for another user and
use the block certificate C as a proof of creation. Once created, the new microchain works
independent from its parent microchain. Linera will make available a dedicated public chain
to allow new users to easily create their first chain.

Linera also makes it possible to safely and verifiably transfer the control of a chain
to another user by executing a transaction that changes the key ownerid(α). Setting
ownerid(α) = ⊥ effectively deactivates the chain permanently.

Using unique identifiers is important so that the state of a deactivated microchain can
be safely deleted and archived in cold storage while preventing the chain of blocks from
being replayed.

Blocks. A block is a data type B = Block(id, n, h, T̃) made of the following data:

• the unique identifier of the chain to extend id,

• a block height n ≥ 0,

• the hash h of the previous block (or ⊥ if n = 0),

• a sequence of transactions T̃ .

A transaction T is an instruction meant to be executed on a chain. Transactions are
typically used to modify the execution state of the chain. In Linera, they may also have
additional effects such as creating chains, sending messages to a recipient chain id′, or
receiving messages.

A microchain id with a current chain of blocks ⊥ → B0 → . . . → Bn is successfully
extended by block B when validators receive a certified request C = cert[B] that contains id
and the next expected block height n+1. Validators track the current state of each chain id
and only vote in favor of adding a block B after validating the correct chaining and the
correct execution of B. Under BFT assumption, this ensures that validators eventually
execute the same sequence of blocks on each chain, therefore agree on the execution state.

The execution of a block B consists in interpreting the transactions T̃ listed in B in the
given order. Transactions may produce outgoing messages for other chains and consume
incoming messages. In practice, for auditing purposes, blocks B also include the hash of the
state after executing the block, as well as the outgoing messages produced by transactions.

9

2.5 Cross-chain requests

The state of a Linera application is usually distributed across many chains for scalability.
To coordinate across chains, applications rely on asynchronous communication (see also
Section 4.3 on programmability).

At the protocol level, asynchronous communication between chains relies on an impor-
tant mechanism called cross-chain requests. Concretely, the execution of a transaction in
a block on a chain id by a validator α may sometimes trigger a one-time, asynchronous
interaction that will modify the state of another chain id′. (See Algorithm 1 for an example
of pseudo-code with cross-chain requests.) Cross-chain requests are cheaply implemented
using remote procedure calls (RPCs) in the internal network of each validator: the imple-
mentation needs only ensure that each request is executed exactly once.

Importantly, arbitrarily modifying the execution state of a target chain with a cross-
chain request is not possible in general because validators do not agree on the order of
execution of cross-chain requests—in other words, this would break the Safety property.
While FastPay [7] uses cross-chain requests for payments only, Linera uses this mechanism
to create new chains and to deliver messages to the inbox of an existing chain.

Inboxes allow Linera to support arbitrary messages because the modification is not
applied to the target chain immediately. Rather, the message is placed in the target chain’s
inbox, implemented as a commutative data structure (i.e. where the order of insertions does
not matter) described in Section 2.6. The owner(s) of the receiving chain then executes a
transaction that picks the message from the inbox and applies its effect to the chain state
(Section 2.7).

2.6 Chain states

We now describe the state of the Linera chains as seen by validators and clients. Every
validator stores a map that contains the states of all the chains, indexed by their identifiers.
Clients have a similar representation of the chains except that they act as a full-node (i.e.
track the chain of blocks and execution state) only for a small subset of the chains relevant
to them. Next, we focus on the state of a given validator, noted α.

Chain state. The state of a chain id as seen by a validator α can be divided into (i) a
consistent part which is a deterministic function of the chain of blocks ⊥ → B0 → . . .→ Bn
already executed by α; and (ii) a localized part on which validators may not agree. The
consistent part of a chain state includes the following data:

• A field ownerid(α) controlling the production of blocks in id, as seen before.

• An integer value, written next-heightid(α), tracking the expected block height for the
next block of id. (Here n+ 1. Initially 0.)

• The hash of the previous block block-hashid(α) (initially ⊥.)

• The execution state, noted stateid(α).

The localized part of a chain state includes the following:

• pendingid(α), an optional value indicating that a block on id is pending confirmation
(the initial value being ⊥).

• A list of certificates, written receivedid(α), tracking all the certificates that have been
confirmed by α and involving id as a recipient chain.

• A data-structure called an inbox and denoted by inboxid(α) (see next paragraph).

10

The field pendingid(α) is specific to single-owner chains and explained in Section 2.8. It is
completed by additional data in the case of permissioned and public chains. The list of
certificates receivedid(α) is crucial for liveness (Section 3.3).

Inbox state. An inbox I = inboxid(α) is a special data structure used to track the cross-
chain messages received by id and waiting to be consumed by a transaction. Specifically,
messages are added to an inbox upon reception and removed from it after being executed
by the receiving chain.

An important property of an inbox is that adding or consuming distinct messages is
commutative. In the simplest implementation, one can think of an inbox as two disjoint
sets of messages I = (I+, I−). We may define the addition of a message m to I, noted
I +m, as (I+ ∪ {m}, I−) if m 6∈ I− and (I+, I−\{m}) otherwise. Similarly, the subtraction
I − m is (I+, I− ∪ {m}) if m 6∈ I+ and (I+\{m}, I−) otherwise. In this setting, when
inboxid(α) = (I+, I−), the set I+ represents the messages m that have been received by id
and are waiting to be executed in a next block; I− tracks the messages that have not
been received by id yet (from the point of view of α) but were nonetheless executed by
anticipation because of a certified block. In this simplified presentation, we are assuming
that messages are never replayed identically, say, because they include a counter for each
pair of sender and receiver (id, id′).

The current implementation of Linera uses a more complex data structure enforcing an
ordered delivery of messages for each pair of sender and receiver, and for each application.
See Appendix A.1 for a detailed description. For simplicity, in what follows, we still use
the notation inboxid− to denote the equivalent of the set I− above, representing the executed
messages waiting to be received by the chain id at a given moment.

2.7 Block execution

We now describe how to execute the sequence of transactions contained in a chain of blocks.
The transactions T supported by a Linera deployment include the following commands:

• OpenChain(id′, pk′) to activate a new chain with a fresh identifier id′ and public key
pk′—possibly on behalf of another user who owns pk′;

• ChangeKey(pk′) to transfer the ownership of a chain;

• CloseChain to deactivate the chain id;

• Execute(o) to execute a user operation o;

• Receive(m) to pick a cross-chain message m from the chain inbox and execute it.

The first three types of transactions are examples of system operations that are predefined
in the protocol. In constrast, user operations o are executed by user-defined applications
(aka “smart contracts”). At a high level, operations are meant to be freely added by the
producer of a block, whereas receiving a cross-chain message requires the message to be
first sent by another transaction of another chain (2.5).

For simplicity, we have omitted transaction fees and additional logic required by multi-
owner chains and reconfigurations (Section 2.9). Formally, to execute user operations o,
we assume a method ExecuteOperation(id, o) that attempts to modify stateid and may
return either ⊥ or (m, id′) in case of success, the latter case being a request that a message m
be sent to the chain id′. We also assume a method to modify stateid by executing a cross-
chain message m, noted ExecuteMessage(id,m). Importantly, receiving a message m
may produce another message m′ in return.

11

This description translates to the pseudo-code in Algorithm 1. The execution of a block
B = Block(id, n, h, T̃) as suggested above corresponds to the function ExecuteBlock. The
validation of blocks by the function BlockIsValid is similar to ExecuteBlock except
that no change to the state is persisted, cross-chain queries are ignored, and messages cannot
be executed by anticipation, that is, the validation fails if inboxid− is not empty at the end
of the call.

2.8 Client/validator interactions

We can now describe the interactions between clients (aka chain owners) and validators in
a Linera system. Clients to the Linera protocol run a local node, noted β, that tracks a
small subset of chains relevant to them. These relevant chains typically include the ones
owned by the client as well as direct dependencies, notably a special Admin chain in charge
of tracking validators and their networking addresses (Section 2.9).

Network interactions with validators are always initiated by a client. Clients may wish
to either (i) extend one of their own chain(s) with a new block, or (ii) provide a lagging
validator with the certificates that it is missing in a chain of interest to the client.

To support these two use cases, validators provide two service handlers described in Al-
gorithm 2 and called HandleRequest and HandleCertificate. For simplicity, we omit
the service handlers used by clients to query the state of a chain or to download a chain of
blocks from a validator.

We start with the interactions meant to update a lagging validator.

Uploading missing certificates to a validator. Any client may upload a new certificate
C = cert[B] with B = Block(id, n, h, T̃) to a validator α using the HandleCertificate
entry point, provided that the chain id is active and that n is the next expected block height
from the point of view of α (i.e. formally ownerid(α) 6= ⊥ and next-heightid(α) = n).

If the validator α has not created the chain id yet or if it is lagging by more than one
block, concretely the client should upload a sequence of multiple missing certificates ending
with C = cert[B]. If necessary, the sequence may start with blocks of an ancestor chain id′

(that is, id′ = parent(parent(. . . id))). In this case, the sequence continues until the block of
the parent chain that created the chain id is reached, then finishes with the chain of blocks
ending with C.

In practice, the need to upload such a sequence of certificates justifies that the local
node β may track the chain id in the first place. The client can quickly find the exact block
that created id by looking at the first block logged in the list receivedid(β).

Extending a single-owner chain. In the common scenario where validators are suffi-
ciently up-to-date, Linera clients may extend their chain with a new block B using a variant
of reliable broadcast [7, 12] illustrated in Figure 1 and going as follows.

• The client broadcasts the block B authenticated by its signature to each validator
using the HandleRequest entry point α (1) and waits for a quorum of responses.

• A validator responds to a valid request R = auth[B] of the expected height by sending
back a signature on B, called a vote, as acknowledgment (3). After receiving votes
from a quorum of validators, a client forms a certificate C = cert[B].

• When a certificate C = cert[B] with the expected next block height is uploaded (4),
this triggers the one-time execution of the block B (5).

A synchronization step is occasionally needed first (0) if some validator α is unable to
vote right away for an otherwise-valid proposal B = Block(id, n, h, T̃). This may happen
for two reasons:

12

Chain
Owner

0 Synchronize chains

1 Send auth[B]

3 Vote on B

4 Confirm cert[B]

Validators

id1 : ⊥ → B1
1 → · · · → B1

n1

id2 : ⊥ → B2
1 → · · · → B2

n2

. . .

id : ⊥ → B1 → · · · [→ B]

2 Validate B

5 Execute B

Figure 1: Extending a single-owner chain id with a new block

1. either the chain id is not active yet or α is missing earlier blocks (i.e. formally
ownerid(α) = ⊥ or next-heightid(α) < n);

2. α is missing cross-chain messages, that is: I− = inboxid− is not empty at the end of the

staged execution of T̃ .

In the first case, the Linera client must upload missing certificates in the chain id (and
possibly its ancestors) as described in the previous paragraph, until next-heightid(α) = n.
In the second case, the client must upload missing certificates in the chains that have sent
the messages m ∈ I− to id. When B has been correctly constructed (i.e. is not trying to
receive messages that were never sent), the set I− is necessarily covered by the certificates
listed in the union

⋃
α′ receivedid(α′) where α′ ranges over any quorum of validators.

Importantly, uploading a missing block to a validator benefits all clients. To maximize
liveness and decrease the latency of their future transactions, in practice, it is expected
that users proactively update all the validators when it comes to their own chains, therefore
minimizing the need for synchronization by other clients. However, the possibility of syn-
chronization by everyone is important for liveness (Section 3.3). It also allows a certificate
to act as a proof of finality for the certified block.

In practice, a client should execute the optional synchronization step (0) and the voting
step (1) on a separate thread for each validator. To prevent denial-of-service attacks from
malicious validators, a client may stop synchronizing validators as soon as enough votes are
collected (2).

The steps 1 2 3 used to decide a new block in a single-owner chain constitute a 1.5
round-trip protocol. Inspired by reliable broadcast, this protocol does not have a notion
of “view change” [12] to support retries. In other words, a chain owner that has started
submitting a (valid) block proposal B cannot interrupt the process to propose a different
block once some validators have voted for B. Doing so would risk blocking their chain. For
this reason, Linera also supports a variant with an extra round trip (Section 2.9).

2.9 Extensions to the core protocol

We now sketch a number of important extensions to the core Linera multi-chain protocol.

Permissioned chains. The protocol presented in Section 2.8 allows extending a single-
owner microchain optimistically in 1.5 client-validator round trips. Linera also supports a
more complex protocol with 2.5 round trips to address the following use cases:

• A single chain owner wants to be able to safely interrupt ongoing block proposals
while they are in progress.

13

• Transactions in blocks depend on external oracles (e.g. Unix time) and include con-
ditions that may become invalid after being valid.

• Multiple owners wish to operate the chain (assuming minimal off-chain coordination).

• A single chain owner wishes to delegate maintenance operations related to validator
reconfigurations.

We omit the details of the 2.5 round-trip protocol for brevity. It can be seen as a simpli-
fied partially-synchronous BFT consensus protocol [12] with view changes (aka rounds) but
without leader election or timeouts. In the absence of leader election, different owners may
try to propose a different block at the same time (i.e. in the same block height and round)
causing the current round to fail and another round to be needed. As a consequence, this
mode of operation assumes that the owner(s) of a same chain maintain a sufficient level of
(off-chain) cooperation so that ultimately only one of them proposes a block and succeeds.

Public chains. Public chains are used in the remaining use cases: when a chain con-
tinuously produces new blocks with the help of validators. In this case, the transactions
authorized in a block are likely to be only those receiving cross-chain messages from other
chains. Examples of applications include:

• Managing validators and stakes in one place (see reconfigurations below).

• Running traditional blockchain algorithms (e.g. AMMs) that were not designed to
take advantage of the multi-chain approach;

• Facilitating the creation of microchains for new users.

Public chains in Linera will be based on a full BFT consensus protocol. This is the
only case in the Linera infrastructure where Linera validators take an active role in block
proposals. We plan to rely on user chains and cross-chain messages instead of a traditional
mempool to gather user transactions into new blocks.

Pub/sub channels. A common use case for cross-chain asynchronous messages is for an
application instance on a chain id to create a channel and maintain a list of subscribers
to it. Specifically, a channel operates as follows:

• Transactions executed on the chain id may push new messages to the channel;

• When this happens, the current subscribers receive a cross-chain message in their
inbox;

• The set of subscribers is managed on the chain id by receiving and executing messages
Subscribe(id′) and Unsubscribe(id′) from subscribers id′.

We have found pub/sub channels to be a useful abstraction when programming Linera
applications (see also Section 4). The Linera protocol supports pub/sub channels natively
in order to enable specific optimizations. For instance, newly accepted subscribers currently
receive the last message of a channel without additional work from the owner of the channel.

Reconfigurations. Being able to change the set of Linera validators (aka the committee)
is crucial for the security of the system (see Section 5).

To do so, Linera deploys a dedicated Admin public chain running the application for
system management. This system application is in charge of keeping track of the succes-
sive sets of validators, aka committees, including their stakes and network addresses. The
successive configurations produced by this application are identified by their epoch number.

14

To safely disseminate the information that the set of validators is changing, the Admin
publishes new configurations to a special channel that every Linera microchain is subscribed
to when created.2 A newly created microchain automatically receives the current validator
set (i.e. the last message in the admin channel) and sets its current epoch number field.

When a new committee is created, every microchain receives a message in its inbox.
Importantly, microchain owners must include the incoming message in a new block to
explicitly migrate their chain to the new set of validators. This must be done when both
sets of validators are still operating, before the previous set stops.

Thanks to the scalable nature of Linera, migrating a large number of chains to a new
configuration in a short period of time is doable in parallel provided that enough clients are
active. To facilitate this process and allow chain owners to go offline for an extended period,
we envision that many users will authorize a third party to create the migration blocks on
their behalf. This will however require configuring the chain to use the 2.5 round-trip
protocol mentioned above for the duration of the authorization.

To prevent long-range attacks, the Admin chain will also regularly suggest old commit-
tees to be deprecated. After accepting such an update, microchains will ignore messages in
blocks certified only by deprecated committees. The old messages will be accepted again
only after they are included in a chain of blocks ending with a trusted configuration (hence
re-certified).

3 Analysis of the Multi-Chain Protocol

In this section, we analyze the design goals set by the Linera blockchain, including respon-
siveness, scalability and security guarantees.

3.1 Responsiveness

A common problem when interacting with classical blockchains is the lack of performance
guarantees. Transactions submitted to the mempool may be picked instantly, after a mo-
ment, or never, depending on the other user transactions posted around the same time.
Canceling a pending transaction typically requires submitting another one with a higher
gas fee. Furthermore, classical blockchains have a fixed and limited throughput: large
enough bursts of submitted transactions (e.g. due to a popular airdrop) must eventually
cause a backlog and/or a surge in transaction fees. Mempool systems also expose users to
value drainage with Miner Extractable Value (MEV) techniques.

Linera allows users to manage their own chain and work around these problems thanks
to a lightweight block extension protocol inspired by client-based reliable broadcast (Sec-
tion 2.8). This approach does not require a mempool, as users submit their transactions
directly to the validators and fully control the processing time. The parallel communication
with the validators means that the only processing delay is imposed by the network round-
trip time (RTT) between the client and the validators (usually a few hundred milliseconds).
Finally, we anticipate that removing the mempool and diminishing latency should greatly
reduce MEV opportunities.

3.2 Scalability

The microchain approach (Section 2.4) allows Linera validators to be efficiently sharded
across multiple workers. Concretely, each worker in a validator is responsible for a particular

2Alternatively, a tree of public chains that relay the stream of configurations may be considered in the
future for scalability purposes.

15

Load
Balancer

VALIDATOR 1

Exactly-once
asynchronous

requests

CLIENT A

worker 2worker 1

chain A

DISTRIBUTED STORAGE

VALIDATOR 3

chain A

DISTRIBUTED STORAGE

worker 2 worker 3worker 1

chain A

Load
Balancer

DISTRIBUTED STORAGE

VALIDATOR 2

worker 2 worker 3worker 1

chain A

Load
Balancer

Figure 2: Architecture of Linera validators.

subset of microchains. Clients communicate with the load balancer of each validator, which
dispatches queries internally to the appropriate worker (Figure 2).

This design allows Linera to scale horizontally as the load of the system increases: each
validator only needs to add worker machines to cope with the traffic. Importantly, sharding
is internal: the number of workers and the assignment of microchains to workers do not
need to be consistent across validators.

Workers within a single validator belong to a single entity and thus trust one another.
This makes the communication between workers—and therefore the cross-chain requests of
Linera (Section 2.5)—quick and inexpensive.

The sharding model of Linera is different from the approach called blockchain shard-
ing [31, 33]. In the latter, cross-chain messages are exchanged between groups of mutually
distrusting nodes (i.e., the validators in charge of each shard) usually spread across the In-
ternet. This incurs significant overhead. Linera uses point-to-point communication across
co-located workers that trust each other and requires much fewer resources. At the same
time, larger validators can be efficiently audited by clients who want to control their oper-
ations. We describe the audit operation in Section 5.

The elastic architecture of Linera allows validators to adapt to traffic fluctuations. When
an increased number of transactions are submitted, it is easy to increase the number of
cloud-based workers processing the transactions. The same workers can be quickly turned
off when no longer needed to reduce costs.

The public chains of Linera require a full BFT consensus protocol to order blocks sub-
mitted by multiple clients (Section 2.9). Yet, the consensus protocol is instantiated once
per public microchain rather than once for the entire system. This has a number of bene-
fits. First, users from different public microchains cannot degrade each other’s experience.
Second, the transaction rate of a single microchain is not a limiting factor for the entire
system. Ultimately, the throughput of Linera can be always increased by creating additional
microchains and augmenting the size of validators.

3.3 Security

In this section, we provide an informal security analysis of the Linera multi-chain protocol.
Following the description in Section 2, we focus on single-owner chains. The analysis will
be extended to other types of accounts (Section 2.9) in future reports.

Claim 1 (Safety). For any microchain, every validator sees (a prefix of) the same chain of

16

blocks, therefore it applies the same sequence of modifications to the execution state of the
chain and eventually delivers the same set of messages to the other chains.

Indeed, per Algorithm 2, each honest validator votes for at most one valid block at
a given height per microchain. By the quorum intersection property (Section 2.2), under
BFT assumption, there can be only one block per height per chain certified by a quorum of
validators. The set of outgoing messages from a chain (the cross-requests in Algorithm 1)
is a deterministic function of the current chain of blocks.

Importantly, asynchronous cross-chain messages are delivered exactly once after they
are scheduled. This allows applications to safely transfer assets.

Claim 2 (Eventual consistency of chains). If a microchain is extended with a new certified
block on an honest validator, any user can take a series of steps to ensure that this block is
added to the chain on every honest validator.

Indeed, any user can retrieve the new certificate and its predecessors from the honest
validator and deliver it to validators that still have not received it. The exact sequencing
in which blocks can be uploaded to a validator is discussed in Section 2.8.

Claim 3 (Eventual consistency of asynchronous messages). If a microchain receives a cross-
chain message on an honest validator, any user can take a series of steps to ensure that
this message is received by the chain on every honest validator.

An asynchronous message is received by a chain on a particular validator only after a
block containing a transaction that triggers the message is signed by a quorum and added
to the sender’s chain. When this happens, the state of the receiving chain is updated to
track the origin of the message (see receivedid(α) in Section 2.6). This allows a client to
download the corresponding block from the same validator if needed. Any honest validator
adding the same block for the first time will add the same message to the recipient’s inbox.

Claim 4 (Authenticity). Only the owner(s) of a microchain can extend their microchain.

Honest validators only accept block proposals if they are authenticated by an owner
(Algorithm 2). This ensures that no one else can add blocks to the microchain. Other types
of microchains (Section 2.9) implement similar verifications.

Claim 5 (Piecewise Auditability). There is sufficient public cryptographic evidence for the
state of Linera to be audited for correctness in a distributed way, one chain at a time.

Any Linera client can request a copy of any microchain and re-execute the certified
blocks. This allows verifying the successive execution states and the set of outgoing messages
from the chain. Execution states are typically compared across validators by including
execution hashes in blocks. The received messages of a chain should be compared to the
outgoing messages from the other chains (Section 5.2).

Claim 6 (Worst-case Efficiency). In a single-owner chain, Byzantine validators cannot
significantly delay block proposals and block confirmations by correct users.

Linera clients contact all the validators in parallel and consider an operation as com-
pleted as soon as they receive signatures from a quorum of validators (Section 2.8).

Claim 7 (Monotonic block validation). In a single-owner chain, if a block proposal is the
first one to be signed by the owner at a given block height and it is accepted by an honest
validator, then with appropriate actions, the chain owner always eventually succeeds in
gathering enough votes to produce a certificate.

17

source code bytecode

microchain A

microchain B

microchain C

APP 1

APP 2 APP INSTANCE 2A

(admin)

APP INSTANCE 1B

(admin)

compile publish

instantiate initialize

send
cross-chain
message

APP INSTANCE 2C

(auto-deployed)
APP INSTANCE 1C

(auto-deployed)

initialize send
cross-chain
message

instantiate

Figure 3: Linera applications.

If the block proposal B for a chain id is accepted by a validator and is the first one
ever signed at this height, this means that every other validator α has already accepted
the proposal (i.e. pendingid(α) = B) or has not voted yet (i.e. pendingid(α) = ⊥). In the
latter case, block validation may temporarily fail for α if some earlier blocks or messages
are missing: this can be resolved by updating the validator with the missing blocks (see
Section 2.8). After proper synchronization, in the absence of external oracle and non-
deterministic behaviors, submitting the proposal B to the validator will eventually produce
the expected vote for B.

4 Building Web3 Applications in Linera

The programming model of Linera [1] is designed to provide rich, language-agnostic com-
posability to application developers while taking advantage of microchains for scaling.

4.1 Creating applications

Linera uses the WebAssembly (Wasm) virtual machine [3, 23] as the execution engine for
user applications. The SDK to develop Linera applications will be initially targeting the
Rust language.

An application is created in several steps (Figure 3). First, a software module (aka
smart contract) in Rust is compiled to Wasm bytecode. The bytecode is then published by
its author on a microchain of its choice and receives a unique bytecode identifier. Next, the
bytecode is instantiated using the bytecode identifier and specific application parameters
(e.g. name of the token, token supply, etc). This operation creates a fresh application
identifier (“app 1” in Figure 3) and initializes the local state of the application (“app
instance 1B”). This initial local state may hold specific parameters to help administrating
the new application in the future.

A single bytecode identifier can spawn across multiple, independent applications that
share the same code but do not share the same configuration (“app 1” and “app 2” in
Figure 3).

18

microchain A

microchain B

APP INSTANCE 2AAPP INSTANCE 1A

call application
(same chain)

request
cross-chain

message to B
(same application)

asynchronous
cross-chain request
to deliver message

APP INSTANCE 1Binclude
message

in a block
update
state

CLIENT B

Figure 4: Cross-chain messages (left and bottom) vs. cross-contract calls (top).

4.2 Multi-chain deployment

Linera applications are multi-chain by default in the sense that their global state is generally
split across several chains. In other words, the local instance of an application at a given
chain holds only the subset of the application state that is located there. For instance, in
an ERC-20-like token management application, the owner of a single-owner chain may want
to hold their personal accounts on the chain that they own.

The bytecode of an application is automatically downloaded and the application started
when the owner of a microchain accepts an incoming message (Section 2.5) from the appli-
cation for the first time (“app instance 1C” in Figure 3).

4.3 Cross-chain communication

Cross-chain communication between applications is realized using asynchronous calls to
allow microchains to run independently. The programming style for cross-chain coordination
between Linera applications is inspired by the actor model [6]. The implementation relies
on cross-chain requests described in Section 2.5. The fundamental point is that each actor
has exclusive access to its own internal state and that actors cannot call each other directly.

Cross-chain messages. Cross-chain messages allow an application to transfer arbitrary
data asynchronously from one chain to another (Figure 4). To make sense of the data,
the same application must be on the sending end and on the receiving end of a cross-chain
message. In practice, the local instance of an application maintains an inbox per origin that
the instance has communicated with. When an application wants to send a message to a
destination, it returns a value containing the message so that the runtime can execute the
appropriate cross-chain request.

Contrary to FastPay [7] and Zef [8], Linera is not limited to payment requests and can
deliver arbitrary cross-chain messages defined by user applications. The effects of cross-chain
messages do not generally commute, therefore in Linera, the ordering in which incoming
messages are received and then executed by a recipient’s chain is important. We solve
this issue by relying on block proposers to specify the ordering of incoming messages when
picking the messages from the chain inboxes.

19

In general, messages are not guaranteed to be picked on the receiving side. When they
are, the current implementation forces messages to be picked in order. This general policy
will likely be refined in the future to account for specific use cases, notably for public chains
where block production never stops (Section 2.9).

Pub/sub channels. On top of the one-to-one communication, Linera supports one-to-
many communication using channels. A user can create a channel within an application,
while the same application’s instances residing on other microchains can subscribe to it by
sending a subscribe message with the publisher application and chain identifiers. Impor-
tantly, a subscriber is added to a channel only when the publisher accepts the subscription
by adding the registration message to its chain. Under the hood, channels act as a set of
one-to-one connections. A message sent to a channel is delivered to all the inboxes that are
subscribed to the channel and can be picked up by the subscribers. By design, a late sub-
scriber, once accepted by the publisher, receives the last message sent to the channel—rather
than the entire history of messages.

4.4 Local composability

Synchronous calls. On the same microchain, different Linera applications can be com-
posed using synchronous calls similar to smart-contract calls in classical blockchains such
as Ethereum [32] (see the top part of Figure 4). The state modifications resulting from a
sequence of application calls and originating from a single user transaction are atomic. In
other words, either all of the calls succeed or all of them fail. Calling an application creates
a virtual copy of its internal state and executes the call on the cached state. At this point,
the new state is not yet written to storage. If any of the transactions fails, all the staged
modifications are discarded.

Sessions. In some cases, it is desirable to delegate the management of a piece of state from
one application to another. We call the temporary object managing such a detached state
a session. A typical example of a use case may go as follows: (i) an application B calls
into the token-management application A; (ii) some tokens are withdrawn from the ledger
of A and put into a new session; (iii) B receives ownership of the session; (iv) B calls into
the session to move the tokens back to the ledger of A, say, under another account; this
effectively consumes and terminates the session.

Sessions are guaranteed to be owned by a single application (no duplication). Consuming
a session is not optional: sessions must be properly consumed before the end of the current
transaction, otherwise, the transaction will fail. In addition to assets, sessions are thus
suitable for managing temporary obligations, for instance, the obligation to pay back a
flash loan [25].

4.5 User authentication

Applications often need to authenticate end users in order to authorize certain actions. For
instance, transferring an asset should require the permission of its owner.

In Linera, users are authenticated when they propose a block in a chain that they own
(Section 2.8). During execution, the identity of the user that signed the current block, called
the authenticated signer, is visible to all the operations contained in the block by default.

An operation creating a cross-chain message may optionally propagate the current au-
thenticated signer along with the message. This is important so that assets temporarily
placed on another chain (say, a public chain) may be claimed by their owner.

Similarly, authenticated signers may be propagated when calling another application on
the same chain. This allows applications to program new categories of assets and make

20

them available to other applications using abstract APIs.

4.6 Ephemeral chains

Another specificity of the programming model of Linera is the ability to create short-lived
permissioned chains (Section 2.9) meant for a short interaction between a small number of
loosely coordinated users.

For instance, two users may create a microchain for swapping two assets atomically.
The shared microchain will have (up to) two owners and its parameters will be adapted to
the exchange process. To use the chain, both users must transfer the assets that they want
to exchange from their primary microchains to the shared chain, then one of the users must
create a block to confirm or cancel the swap. Importantly, once the swap is concluded, the
shared microchain is deactivated. This prevents any further extension of the temporary
chain and allows archiving it in the future.

To optimize liveness in the case of an ephemeral permissioned chain (Section 2.9), op-
erations may interact with the user permissions to propose blocks as seen by the consensus
protocol. For instance, in the case of a temporary chain for an atomic swap, it is desir-
able to restrict the ability to propose blocks to those owners who have already locked their
assets. Another example is a temporary microchain dedicated to a game of chess between
two users. Here, the application can determine which player needs to move and update the
microchain consensus layer to accept the next block only from the chosen user. A more
realistic chess application may also include a referee as an owner of the temporary chain to
enforce progress.

5 Decentralization

Linera encourages validators to use cloud infrastructure to unlock elastic scaling and benefit
from standard production environments. To maximize decentralization, Linera relies on two
key features: delegated proof of stake (DPoS) and audits by the community.

5.1 Delegated proof of stake

To ensure the long-term security of the system, Linera relies on delegated proof of stake
(DPoS): the voting rights of validators are functions of their stakes in the system, together
with the stakes that are delegated to them by end users. For DPoS to function correctly,
users must be able to change their delegation preferences, and validators must have an
automated procedure to join and leave the system. Both operations require a public chain
where any user can submit transactions. Reconfiguring validators also requires a carefully-
designed migration protocol for every chain. Both mechanisms were sketched in Section 2.9.

Token delegation and economics will be made more precise in a separate document. To
address long-range attacks—where old committees become corrupt [17]—, Linera allows
microchains to refuse cross-chain messages (e.g. payments) from committees that are not
trusted anymore (see Section 2.9).

5.2 Auditability

Auditing a blockchain traditionally requires running a full node that locally holds a copy of
the entire transaction history. However, in the case of a high-throughput system, this may
require significant amounts of disk space and CPU resources. When regular users—those
using commodity hardware—need days or weeks to fully audit a decentralized system, the
community may not be able to credibly deter a coalition of rogue validators from altering

21

the protocol. Light clients [14] reduce resource usage but only check the block headers and
do not provide the same level of verification.

In contrast, the microchain approach makes it possible for the community to continu-
ously audit Linera validators. In Linera, an auditor is similar to a client (Section 2.8) in
that it only needs to track a small subset of microchains. Because scalability in Linera
relies on having many chains rather than larger blocks, it is always feasible to replay the
execution of a single chain in real-time on commodity hardware.

For the Linera community to continuously verify all the chains, a distributed protocol can
be put in place on top of a shared distributed storage such as IPFS [5] as follows. Executing
the blocks in a chain allows to verify the execution state and the outgoing messages. Blocks
should typically be marked as audited and the outgoing messages indexed in the distributed
storage. To complete the verification of a chain, the client must also verify that each
incoming message was indeed produced by its sender chain. This can be done by looking
up incoming messages in the shared storage to see if they have been verified already, and
otherwise, schedule their verification.

6 Conclusion

Linera aims to deliver the first multi-chain infrastructure with predictable performance,
responsiveness, and security at the Internet scale. To do so, Linera introduces the idea of
operating many parallel chains, called microchains, in the same set of validators, and using
the internal network of each validator to quickly deliver the asynchronous messages between
chains. This architecture has a number of advantages:

• Elastic scaling. In Linera, scalability is obtained by adding chains, not by increas-
ing the size or the rate of blocks. Each validator may add and remove capacity (aka
internal workers) at any time to maintain nominal performance for multi-chain appli-
cations.

• Responsiveness. When microchains are operated by a single user, Linera uses a
simplified mempool-free consensus protocol inspired by reliable broadcast [7,12]. This
reduces block latency and ultimately makes Web3 applications more responsive.

• Composability. Compared to other multi-chain systems, low block latency also helps
with composability: it allows receivers of asynchronous messages from another chain
to quickly answer by adding a new block.

• Chain security. Compared to traditional multi-chain systems, a benefit of running
all the microchains in the same set of validators is that creating chains does not impact
the security model of Linera.

• Decentralization. Linera relies on delegated proof of stake (DPoS) for security.
Each microchain can be separately executed on commodity hardware. This allows
clients and auditors to continuously run their own verifications and hold validators
accountable.

• Language agnostic. The programming model of Linera does not depend on a specific
programming language. After careful consideration, we have decided to concentrate
our efforts on Wasm and Rust for the initial execution layer of Linera.

In future reports, we will formalize the protocols to support multi-owner chains as well
as the other extensions mentioned in Section 2.9. In particular, we plan to incorporate a
state-of-the-art consensus mechanism (e.g. [16, 22, 27]) on top of our existing multi-chain

22

infrastructure. We also plan to describe the economic models for the fair remuneration of
validators and incentivization of users separately. Linera’s ability to deactivate and archive
microchains provides an elegant venue to control the storage costs of validators in the
future. In general, we anticipate that Linera’s integrated architecture and the minimization
of validator interactions will be extremely helpful when it comes to optimizing the costs of
operating validators at scale.

References

[1] Linera developer manual. https://linera.dev.

[2] Linera github repository. https://github.com/linera-io/linera-protocol.

[3] WebAssembly. https://webassembly.org/.

[4] The Bytecode Alliance. https://bytecodealliance.org/, 2022.

[5] The InterPlanetary File System. https://ipfs.tech/, 2022.

[6] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT
press, 1986.

[7] Mathieu Baudet, George Danezis, and Alberto Sonnino. Fastpay: High-performance
Byzantine fault tolerant settlement. In Proceedings of the 2nd ACM Conference on
Advances in Financial Technologies, pages 163–177, 2020.

[8] Mathieu Baudet, Alberto Sonnino, Mahimna Kelkar, and George Danezis. Zef: Low-
latency, scalable, private payments. arXiv preprint arXiv:2201.05671, 2022.

[9] Sam Blackshear, Evan Cheng, David L. Dill, Victor Gao, Ben Maurer, Todd
Nowacki, Alistair Pott, Shaz Qadeer, Rain, Dario Russi, Stephane Sezer,
Tim Zakian, and Runtian Zhou. Move: A language with programmable
resources. https://diem-developers-components.netlify.app/papers/

diem-move-a-language-with-programmable-resources/2020-05-26.pdf, 2020.

[10] Vitalik Buterin. Endgame. https://vitalik.ca/general/2021/12/06/endgame.

html, 2021.

[11] Vitalik Buterin. An incomplete guide to rollups. https://vitalik.ca/general/

2021/01/05/rollup.html, 2021.

[12] Christian Cachin, Rachid Guerraoui, and Lúıs Rodrigues. Introduction to reliable and
secure distributed programming. Springer Science & Business Media, 2011.

[13] Miguel Castro, Barbara Liskov, et al. Practical Byzantine fault tolerance. In OsDI,
volume 99, pages 173–186, 1999.

[14] Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. Sok:
Blockchain light clients. Cryptology ePrint Archive, 2021.

[15] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized ex-
changes, miner extractable value, and consensus instability. In 2020 IEEE Symposium
on Security and Privacy (SSP’20), pages 910–927. IEEE, 2020.

23

https://linera.dev
https://github.com/linera-io/linera-protocol
https://webassembly.org/
https://bytecodealliance.org/
https://ipfs.tech/
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf
https://vitalik.ca/general/2021/12/06/endgame.html
https://vitalik.ca/general/2021/12/06/endgame.html
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html

[16] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman.
Narwhal and Tusk: a DAG-based mempool and efficient BFT consensus. In Proceedings
of the Seventeenth European Conference on Computer Systems, pages 34–50, 2022.

[17] Evangelos Deirmentzoglou, Georgios Papakyriakopoulos, and Constantinos Patsakis. A
survey on long-range attacks for proof of stake protocols. IEEE Access, 7:28712–28725,
2019.

[18] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. {Bitcoin-
NG}: A scalable blockchain protocol. In 13th USENIX symposium on networked sys-
tems design and implementation (NSDI 16), pages 45–59, 2016.

[19] Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun Li,
Dahlia Malkhi, Yu Xia, and Runtian Zhou. Block-STM: Scaling blockchain execution
by turning ordering curse to a performance blessing, 2022.

[20] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf,
and Srdjan Capkun. On the security and performance of proof of work blockchains. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security, pages 3–16, 2016.

[21] Arthur Gervais, Hubert Ritzdorf, Ghassan O Karame, and Srdjan Capkun. Tampering
with the delivery of blocks and transactions in bitcoin. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 692–705, 2015.

[22] Neil Giridharan, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman.
Bullshark: DAG BFT protocols made practical. arXiv preprint arXiv:2201.05677,
2022.

[23] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to speed with
webAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 185–200, 2017.

[24] Jae-Yun Kim, Junmo Lee, Yeonjae Koo, Sanghyeon Park, and Soo-Mook Moon.
Ethanos: efficient bootstrapping for full nodes on account-based blockchain. In Pro-
ceedings of the Sixteenth European Conference on Computer Systems, pages 99–113,
2021.

[25] Krešimir Klas. Smart contract development — Move vs. Rust. https://medium.com/
@kklas/smart-contract-development-move-vs-rust-4d8f84754a8f, 2022.

[26] Micha l Król, Onur Ascigil, Sergi Rene, Alberto Sonnino, Mustafa Al-Bassam, and
Etienne Rivière. Shard scheduler: object placement and migration in sharded account-
based blockchains. In Proceedings of the 3rd ACM Conference on Advances in Financial
Technologies, pages 43–56, 2021.

[27] Dahlia Malkhi and Kartik Nayak. Hotstuff-2: Optimal two-phase responsive bft. Cryp-
tology ePrint Archive, 2023.

[28] Du Mingxiao, Ma Xiaofeng, Zhang Zhe, Wang Xiangwei, and Chen Qijun. A review on
consensus algorithm of blockchain. In 2017 IEEE international conference on systems,
man, and cybernetics (SMC), pages 2567–2572. IEEE, 2017.

24

https://medium.com/@kklas/smart-contract-development-move-vs-rust-4d8f84754a8f
https://medium.com/@kklas/smart-contract-development-move-vs-rust-4d8f84754a8f

[29] nanfengpo. A design of decentralized ZK-rollups based on EIP-4844. https://

ethresear.ch/t/a-design-of-decentralized-zk-rollups-based-on-eip-4844/

12434, 2022.

[30] Slashdot. Best blockchain apis of 2022. https://slashdot.org/software/

blockchain-apis/, 2022.

[31] Alberto Sonnino. Chainspace: A sharded smart contract platform. In Network and
Distributed System Security Symposium 2018 (NDSS 2018), 2018.

[32] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1–32, 2014.

[33] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling
blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC conference
on computer and communications security, pages 931–948, 2018.

25

https://ethresear.ch/t/a-design-of-decentralized-zk-rollups-based-on-eip-4844/12434
https://ethresear.ch/t/a-design-of-decentralized-zk-rollups-based-on-eip-4844/12434
https://ethresear.ch/t/a-design-of-decentralized-zk-rollups-based-on-eip-4844/12434
https://slashdot.org/software/blockchain-apis/
https://slashdot.org/software/blockchain-apis/

Algorithm 1 Block execution and validation

1: function Init(id) . Set up a new chain if necessary
2: if id 6∈ chains then
3: ownerid ← ⊥
4: next-heightid ← 0
5: block-hashid ← ⊥
6: stateid ← stateid(init) . Genesis state for id
7: pendingid(α)
8: receivedid ← []
9: inboxid ← ({}, {})

10: function ExecuteTransaction(id, T , C)
11: switch T do
12: case OpenChain(id′, pk′):
13: ensure id′ = id :: next-heightid

14: do asynchronously . Cross-chain request to id′

15: run Init(id′)
16: ownerid

′ ← pk′ . Activate authentication key

17: receivedid′
← receivedid′

:: C . Update receiver’s log

18: case Execute(o):
19: try let r = ExecuteOperation(id, o) . Try to update stateid

20: if r = (m, id′) then . Was a cross-chain message requested by o?
21: do asynchronously . Cross-chain request to id′

22: run Init(id′)

23: inboxid
′
← inboxid

′
+m . Add the message to the inbox of id′

24: receivedid′
← receivedid′

:: C . Update receiver’s log

25: case Receive(m):
26: try inboxid ← inboxid −m . Try removing the message from the local inbox
27: try run r = ExecuteMessage(id,m) . Try to update stateid

28: if r = (m′, id′) then . Was another cross-chain message requested by m?
29: do asynchronously . Cross-chain request to id′

30: run Init(id′)

31: inboxid
′
← inboxid

′
+m′ . Add the message to the inbox of id′

32: receivedid′
← receivedid′

:: C . Update receiver’s log

33: case ChangeKey(pk′):
34: ownerid ← pk′ . Update authentication key

35: case CloseChain:
36: ownerid ← ⊥ . Make the chain inactive

37: function ExecuteBlock(id, T̃ , C)
38: for T ← T̃ do
39: run ExecuteTransaction(id, T , C)

40: function BlockIsValid(id, T̃)
41: save stateid

42: for T ← T̃ do
43: try run ExecuteTransaction(id, T , ⊥) while skipping the asynchronous blocks

44: ensure inboxid− is empty
45: restore stateid

46: return true

26

Algorithm 2 Validator service (single-owner chain)

1: function HandleRequest(auth[B])
2: let Block(id, n, h, Õ) = B
3: ensure ownerid 6= ⊥ . The chain must be active
4: verify that auth[B] is valid for ownerid . Check authentication
5: if pendingid 6= B then
6: ensure pendingid = ⊥
7: ensure next-heightid = n
8: ensure block-hashid = h
9: ensure BlockIsValid(id, Õ)

10: pendingid ← B . Lock the chain on B

11: return Vote(B) . Success: return a signature of the request

12: function HandleCertificate(C)
13: verify that C = cert[B] is valid
14: let Block(id, n, h, Õ) = B
15: ensure ownerid 6= ⊥ . Make sure the chain is active
16: if next-heightid = n then
17: run ExecuteBlock(id, Õ, C)
18: next-heightid ← n+ 1 . Update block height
19: block-hashid ← hash(B)
20: pendingid ← ⊥ . Make the chain available again

27

A Cross-chain communication

We now make precise the data structures used for inboxes as well as the practical imple-
mentation of cross-chain requests.

A.1 Messages and inboxes

We have seen that cross-chain messages m are executed after a command Receive(m) is
included in a block of a receiving chain (Algorithm 1).3

Cross-chain messages. An incoming message (or simply message) is a pair m = (id, ε)
including the following information:

• a chain id at the origin of the message;

• an event ε (defined next).

The event ε carried by m is a pair ε = (c, µ) where

• c = (n, i) is a cursor made of a blockheight n and an index i,

• µ is a message payload.

Here, the index i is understood as the index of the payload µ within the n-th block of
the chain id. The payload µ is meant to be executed on the receiving chain by a specific
application (also encoded in µ). Cursors are ordered lexicographically. If c = (n, i), we
write c+ 1 = (n, i+ 1).

Inbox operations. For a particular node α and chain id′, we write inboxid
′
(α) for the

inbox made of messages received by a chain id′ and waiting to be picked. Intuitively, an
inbox can be thought as a set of messages m. Yet, in Section 2, we have seen that because
validators may add and pick messages in different orders, convergence requires at least two
sets of messages inboxid

′
(α) = I = (I+, I−).

In the practical implementation of Linera, we have chosen a more efficient approach
that restricts the order in which messages can be received. Namely, messages must have
increasing cursors c = (n, i) for each origin id. Concretely, we see inboxid

′
(α) as a collection

of partial inboxes inboxid
′,id(α). Each partial inbox ι = (S+, S−, c+, c−) is made of the

following data:

• A set of added events S+ (initially ∅),

• A set of removed events S− (initially ∅),

• A minimum cursor to be added c+ (initially (0, 0)),

• A mimimum cursor to be removed c− (initially (0, 0)).

At all times, either S+ or S− must be empty. c+ (resp. c−) is meant to guarantee that
added (resp. removed) events have increasing cursors.

3The current implementation of Linera assumes (without loss of generality) that the commands
Receive(m) happen at the beginning of a block. This choice may be revisited in the future.

28

For any set of events S, we define S ↑ c = {(c′, e′) ∈ S such that c′ > c} and S ↑= c =
{(c′, e′) ∈ S such that c′ ≥ c}. Let ι = (S+, S−, c+, c−) and ε = (c, µ). Removing ε from ι
is a (fallible) operation defined as

ι− ε =

(∅, S− ∪ {ε}, c+, c+ 1) if c ≥ c− and S+ ↑= c = ∅
(S+ ↑c, ∅, c+, c+ 1) if c ≥ c− and ε ∈ S+
⊥ otherwise

We note that the operation S+ ↑ c removes the event ε, as well as all events with a lower
cursor. This allows a receiving chain to effectively skip incoming messages.

Adding ε to ι is a (fallible) operation defined as

ι+ ε =

(S+ ∪ {ε}, ∅, c+ 1, c−) if c ≥ c+ and S− = ∅
(∅, S− ↑c, c+ 1, c−) if c ≥ c+ and (S− ↑c) ∪ {ε} = S−
⊥ otherwise

Importantly, the condition on S− in the second case is stronger than ε ∈ S− and implies
that we only remove the element ε with the smallest cursor from S−.

Finally, in relation to Algorithm 1, if m = (id, ε), removing m from inboxid
′
(α) (resp.

adding m to it) consists in removing ε from the partial inbox inboxid
′,id(α) (resp. adding m

to the partial inbox).

Outgoing messages and certificates. An outgoing message M is a tuple M = (id′, µ)
where

• id′ is a target chain,

• µ is a message payload as before.

In practice, block certificates C are extended with the vector of outgoing messages M̃
scheduled by the execution of the block, namely: C = cert[B, M̃]. This is useful for the
implementation of cross-chain messages as well as the distributed auditing of chains.

A.2 Cross-chain requests and outboxes

Defining inboxes so as to ensure ordered delivery of messages is meant to simplify the
implementation of an exactly-once delivery of cross-chain requests represented by the “do
asynchronously { .. }” blocks in Algorithm 1.

Outboxes. Specifically, when a message m = (id, ε) is scheduled to be sent from id to
a chain id′, we mean to first add it to a local structure called an outbox and written
outboxid

′,id(α).
Because messages are created by certified blocks that are executed in order, the current

implementation of Linera defines an outbox simply as a set of block heights Q (initially ∅).
The content of an outbox outboxid

′,id(α) = Q is defined as the set of events ε = ((n, i), µ)
such that there exists a certified block cert[B, M̃] with height n ∈ Q in id such that the
outgoing message in position i of M̃ is M = (id′, µ), and such that µ has not been confirmed
to be received yet. We say that the event ε is contained in C with target id′.

When a new certified block B is executed at height n and creates its i-th outgoing
message M = (id′, µ), the event ε = ((n, i), µ) must be added to the suitable outbox of id
with target id′. Concretely, this is done by adding n to the set Q = outboxid

′,id(α).
Let Q be an outbox. To mark all the messages of Q as received up to a block height n̂,

we define the operation Q↑ n̂ = {n ∈ Q such that n > n̂}.

29

Cross-chain handshake. The current implementation of Linera starts a round of hand-
shakes with all the relevant chains id′ at the end of every run of the handler HandleCer-
tificate on a certificate for a chain id (see Algorithm 2). Specifically, for every outbox
outboxid

′,id(α) = Q such that Q 6= ∅, the following remote procedure calls (RPCs) are
exchanged and processed by a dedicated handler HandleCrossChainRequest:

1. The worker of id sends to id′ a RPC message Update(id′, id, C̃) containing a (non-
empty) sequence of certificates C̃ issued by id and corresponding to the block heights
n ∈ Q, by increasing order.

2. Upon receiving such a message Update(id′, id, C̃), the worker of id′ extracts all the
events ε with target id′ contained in each certificate C in C̃. Then, it attempts to add
each event to the inbox of id′, by increasing order of cursor (i.e by increasing block
heights and indices in a block). A message m may fail to be added if it was already
added in a previous handshake; in this case, m is simply skipped.

3. The worker of id′ replies to id with a RPC message Confirm(id′, id, n̂) containing the
highest processed block height so far n̂ (if any).

4. Upon receiving Confirm(id′, id, n̂), the worker of id marks the messages as received in
the corresponding outbox: outboxid

′,id(α)← outboxid
′,id(α) ↑ n̂.

In Step 3, n̂ is obtained from the cursor c+ of inboxid
′,id(α) as follows: n̂ = ⊥ if c+ =

(0, 0). If c+ = (n, 0) for some n > 0, then n̂ = n−1. Otherwise, we have that c+ = (n, i+1)
implies n̂ = n.

This translates into the pseudo-code of Algorithm 3.

Cross-chain requests without a message. In Algorithm 1, the operation OpenChain
triggers a cross-chain request with a specific one-time effect. In practice, we introduce
special messages to carry all requests using the same handshake protocol. In the example
of OpenChain, the receiving chain is created during the cross-chain handshake when the
message is about to be added to the inbox.

30

Algorithm 3 Internal cross-chain handshake protocol

1: function SendCrossChainRequests(id) . Send all pending cross-chain requests from id

2: for Q = outboxid
′,id in outboxid do . For every non-empty outbox of id

3: if Q 6= ∅ then
4: let C̃ = [GetCertificate(id, n) for n in Q] . List certificates by increasing height
5: send Update(id′, id, C̃) . Send an update to id′

6: upon message Update(id′, id, C̃): . id′ received an update from id
7: for C in C̃ do
8: for ε in GetEvents(id′, C) do . Obtain the events meant for us
9: run Init(id′)

10: CheckImmediateEffect(id′, ε) . Apply any immediate effect

11: try inboxid
′,id ← inboxid

′,id + ε . Update the inbox

12: receivedid′
← receivedid′

:: C . Track the dependency

13: let n̂ = LatestAddedHeight(inboxid
′,id) . Find the latest height from (id)

14: if n̂ 6= ⊥ then
15: send Confirm(id′, id, n̂) . Reply with a confirmation

16: upon message Confirm(id′, id, n̂): . id received a confirmation from id′

17: outboxid
′,id ← outboxid

′,id ↑ n̂ . Discard all confirmed messages

18: function GetEvents(id′, C) . Find the events contained in C with target (id′, a)
19: r ← []
20: let C = cert[B, M̃] and B = Block(id, n, h, Õ)
21: for 0 ≤ i < len(M̃) do
22: if let (id′, µ) = M [i] then . If the i-th outgoing message matches
23: let ε = ((n, i), µ)
24: r ← r :: ε . add an event
25: return r

26: function CheckImmediateEffect(id′, ε) . Apply any immediate effect of the event
27: let (c, µ) = ε
28: if let OpenChain(id′, pk′) = µ then
29: ownerid

′ ← pk′ . Create the chain id′ immediately upon receiving the request

30: function LatestAddedHeight(ι) . Find the latest height added to a partial inbox
31: let (S+, S−, c+, c−) = ι
32: let (n, i) = c+
33: if i > 0 then
34: return n
35: else if n > 0 then
36: return n− 1
37: else
38: return ⊥

31

** Release notes **

Aug 16, 2023 – Version 2

• Clarify the definitions of public chains and how blocks may be produced in such chains.

• Make visible in the pseudo-code that messages may produce other messages.

• Swap the definitions of transactions and operations to be closer to the reference implementa-
tion [2] and the developer manual [1].

• Add an appendix to document the cross-chain communication protocols.

• Add section on user authentication.

Dec 19, 2022 – Version 1

• Initial release

32

	Introduction
	The need for predictable performance and responsiveness in Web3
	The blockspace scarcity problem
	Shortcomings of existing approaches
	Our mission
	Overview of the project
	An integrated multi-chain system with elastic validators
	Making multi-chain programming mainstream
	Robust decentralization for elastic validators

	The Linera Multi-Chain Protocol
	Participants: users, validators, chain owners
	Security model
	Notations
	Microchains
	Cross-chain requests
	Chain states
	Block execution
	Client/validator interactions
	Extensions to the core protocol

	Analysis of the Multi-Chain Protocol
	Responsiveness
	Scalability
	Security

	Building Web3 Applications in Linera
	Creating applications
	Multi-chain deployment
	Cross-chain communication
	Local composability
	User authentication
	Ephemeral chains

	Decentralization
	Delegated proof of stake
	Auditability

	Conclusion
	Cross-chain communication
	Messages and inboxes
	Cross-chain requests and outboxes

