
Prepared for
Jordan Oroshiba
Astria

Prepared by
Syed Faraz Abrar
William Bowling
AvrahamWeinstock
Zellic

April 22, 2024

Astria Shared Sequencer
Blockchain Security Assessment

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 5

2. Introduction 6

2.1. About Astria Shared Sequencer 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Prepare proposal must obey themax bytes limit 11

3.2. Incorrect is_source logic 13

3.3. The prefix of returned assets is not removed 16

3.4. Incorrect channel when checking escrow balance 18

3.5. Out-of-bounds access fetching block by hash 20

3.6. Duplicate rollup ids 22

3.7. Duplicate transaction inconsistency 24

3.8. Transfer of zero amounts is allowed 26

Zellic © 2024 ← Back to Contents Page 2 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3.9. Proposal time-out leads to differing chain states 28

3.10. Mint action can overflow the balance 31

3.11. Only some IBC requests can fail 33

3.12. List of assets in bridge init is unbounded 34

3.13. Duplicate Celestia rollup blob causes panic 36

3.14. TXs that are too large are rejectedwithout error 38

4. Discussion 39

4.1. Suggestions for astria-merkle 40

5. ThreatModel 40

5.1. Component: Composer 41

5.2. Component: Conductor 42

5.3. Component: Merkle 43

5.4. Component: Sequencer Relayer 44

5.5. Component: Sequencer 45

6. Assessment Results 61

6.1. Disclaimer 62

Zellic © 2024 ← Back to Contents Page 3 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 4 of 62

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Astria from March 4th to April 17th, 2024. During this
engagement, Zellic reviewed Astria Shared Sequencer's code for security vulnerabilities, design
issues, and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Could an attacker cause a loss of funds for users?
• Can the rollup trust the data coming from the conductor?
• Can each node operator receive their full blocks?
• Are the blocks executed correctly and in order?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

During our assessment on the scoped Astria Shared Sequencer Crates, we discovered 14 findings.
One critical issue was found, 12 were low impact, and the remaining finding was informational in
nature.

Additionally, Zellic recorded its notes and observations from the assessment for Astria's benefit in
the Discussion section (4. ↗) at the end of the document.

Zellic © 2024 ← Back to Contents Page 5 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Breakdown of Finding Impacts

Impact Level Count

■ Critical 1

■ High 0

■ Medium 0

■ Low 12

■ Informational 1

Zellic © 2024 ← Back to Contents Page 6 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

2. Introduction 2.1. About Astria Shared Sequencer

Astria contributed the following description of Astria Shared Sequencer:

Astria is a Shared Sequencer Network with Celestia underneath. It provides ordering guaran-
tees with soft commitments to chains, relying on Celestia’s DAS network to provide firm com-
mitments and broad data availability.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the crates.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect

Zellic © 2024 ← Back to Contents Page 7 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or
are not directly related to the scoped crates itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Page 8 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

2.3. Scope

The engagement involved a review of the following targets:

Astria Shared Sequencer Crates

Repository https://github.com/astriaorg/astria ↗

Version astria: 105474286ea1803244dcf2851bb5a84f5e16daa8

Programs • astria-conductor/src/*
• astria-sequencer/src/*
• astria-merkle/src/*
• astria-sequencer-relayer/src/*

Type Rust

Platform Cosmos-compatible

2.4. Project Overview

Zellic was contracted to perform a security assessment with three consultants for a total of 6.5
person-weeks. The assessment was conducted over the course of six calendar weeks and two cal-
endar days.

Zellic © 2024 ← Back to Contents Page 9 of 62

https://github.com/astriaorg/astria

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Contact Information

The following project manager was associated
with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Syed Faraz Abrar
Engineer
faith@zellic.io ↗

William Bowling
Engineer
vakzz@zellic.io ↗

AvrahamWeinstock
Engineer
avi@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

March 4, 2024 Kick-off call

March 4, 2024 Start of primary review period

April 17, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 10 of 62

mailto:chad@zellic.io
mailto:faith@zellic.io
mailto:vakzz@zellic.io
mailto:avi@zellic.io

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3. Detailed Findings 3.1. Prepare proposal must obey themax bytes limit

Target astria-sequencer/src/app.rs

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

When a PrepareProposal request is sent by CometBFT, there is a max_tx_bytes parameter that in-
dicates thatmaximumsize of all the transactions that can be returned. See the spec formore details
at https://docs.cometbft.com/v0.37/spec/abci/abci++_methods#parameters-and-types ↗.

The implementation of prepare_proposal currently does not check the size of the transactions that
are being returned against the max_tx_bytes limit:

#[instrument(name = "App::prepare_proposal", skip_all)]
pub(crate) async fn prepare_proposal(

&mut self,
prepare_proposal: abci::request::PrepareProposal,
storage: Storage,

) -> anyhow::Result<abci::response::PrepareProposal> {
self.is_proposer = true;
self.update_state_for_new_round(&storage);

let (signed_txs, txs_to_include)
= self.execute_block_data(prepare_proposal.txs).await;

let deposits = self
.state
.get_block_deposits()
.await
.context("failed to get block deposits in prepare_proposal")?;

// generate commitment to sequence::Actions and deposits and commitment to
the rollup IDs
// included in the block
let res = generate_rollup_datas_commitment(&signed_txs, deposits);

Ok(abci::response::PrepareProposal {
txs: res.into_transactions(txs_to_include),

})
}

Zellic © 2024 ← Back to Contents Page 11 of 62

https://docs.cometbft.com/v0.37/spec/abci/abci++_methods#parameters-and-types

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Impact

If the list of transactions is over themax_tx_bytes limit, thenCometBFTwill immediatelypanic, lead-
ing to a chain halt.

For reference, this is the flow in CometBFT:

1. CometBFT sends the PrepareProposal request to the Astria Sequencer here ↗.

2. The transactions returned are validated here ↗.

3. Validation will return an error if the max_tx_bytes is exceeded here ↗.

4. When CreateProposalBlock() returns the error, the codewill panic immediately here ↗.

Recommendations

The returned list of transactions should be checked against the max_tx_bytes limit to ensure that it
is below the limit.

Remediation

This issuehasbeenacknowledgedbyAstria, and a fixwas implemented in commit 473041a8 ↗.

Zellic © 2024 ← Back to Contents Page 12 of 62

https://github.com/cometbft/cometbft/blob/main/internal/state/execution.go#L136-L148
https://github.com/cometbft/cometbft/blob/main/internal/state/execution.go#L162-L164
https://github.com/cometbft/cometbft/blob/main/types/tx.go#L113
https://github.com/cometbft/cometbft/blob/main/internal/consensus/state.go#L1315
https://github.com/astriaorg/astria/commit/473041a839036affd8abdf0a6866e770f42c02c9

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3.2. Incorrect is_source logic

Target astria-
sequencer/src/ibc/ics20_{transfer,withdrawal}.rs

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

When transferring or receiving assets via IBC, a check needs to be performed in order to de-
termine whether the asset originated from Astria or if it was from an external chain. From the
ics-020-fungible-token-transfer spec ↗, the logic is as follows:

prefix = "{sourcePort}/{sourceChannel}/"
// we are the source if the denomination is not prefixed
source = denomination.slice(0, len(prefix)) !== prefix
if source {

The two implementations in Astria are as follows:

// ics20_withdrawal.rs
fn is_source(source_port: &PortId, source_channel: &ChannelId, asset: &Denom)

-> bool {
let prefix = format!("{source_port}/{source_channel}/");
!asset.prefix_is(&prefix)

}

// ics20_transfer.rs
fn is_source(

source_port: &PortId,
source_channel: &ChannelId,
asset: &Denom,
is_refund: bool,

) -> bool {
let prefix = format!("{source_port}/{source_channel}/");
if is_refund {

!asset.prefix_is(&prefix)
} else {

asset.prefix_is(&prefix)
}

}

Zellic © 2024 ← Back to Contents Page 13 of 62

https://github.com/cosmos/ibc/blob/0238989da88e790ec4daea7214ff3521cc264137/spec/app/ics-020-fungible-token-transfer/README.md?plain=1#L229-L232

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

This implementation seemscorrect, but due to theway theDenom is created, theprefixwill never end
in a slash:

impl Denom {
pub fn prefix_is(&self, prefix: &str) -> bool {

self.prefix == prefix
}

}

impl From<String> for Denom {
fn from(denom: String) -> Self {

let Some((prefix, base_denom)) = denom.rsplit_once('/') else {
return Self {

id: Id::from_denom(&denom),
base_denom: denom,
prefix: String::new(),

};
};

Self {
id: Id::from_denom(&denom),
base_denom: base_denom.to_string(),
prefix: prefix.to_string(),

}
}

}

For example, when parsing the denom transfer/channel-0/stake, the prefix will be
transfer/channel-0 and the base_denom will be stake, causing the prefix in is_source to
nevermatch.

Impact

When performing an Ics20Withdrawal, the is_source function will always return true, causing the
funds to always be put into the escrow account.

Whenreceiving fundsviaanics20 transfer,is_sourcewill always return false, causing the incoming
denom to always have an additional prefix prepended. This makes it impossible to send funds back
to the original chain.

Recommendations

The prefix in the is_source functions should have the slash removed from the end, or the Denom
prefix should always include the slash at the end.

Zellic © 2024 ← Back to Contents Page 14 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Remediation

This issuehasbeenacknowledgedbyAstria, and a fixwas implemented in commit 2c0d2b11 ↗.

Zellic © 2024 ← Back to Contents Page 15 of 62

https://github.com/astriaorg/astria/commit/2c0d2b110353df31dd582e123b0bddd8792bd370

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3.3. The prefix of returned assets is not removed

Target astria-
sequencer/src/ibc/ics20_transfer.rs

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

Whenanasset that originated fromAstria is returned via an IBC transfer, the escrowbalance for that
channel is checked to ensure that the original asset was transferred:

if is_source(source_port, source_channel, &denom, is_refund) {
// sender of packet (us) was the source chain
// subtract balance from escrow account and transfer to user

let escrow_balance = state
.get_ibc_channel_balance(source_channel, denom.id())
.await
.context("failed to get IBC channel balance in

execute_ics20_transfer")?;

let user_balance = state.get_account_balance(recipient,
denom.id()).await?;
state

.put_ibc_channel_balance(
source_channel,
denom.id(),
escrow_balance

.checked_sub(packet_amount)

.ok_or(anyhow::anyhow!(
"insufficient balance in escrow account to transfer tokens"

))?,
)
.context("failed to update escrow account balance in

execute_ics20_transfer")?;

The issue is that the incoming assets' denom will be prefixed with
{source_port}/{source_channel}/, which is never removed. As the escrow balance was
updatedwith the unprefixed denom, the balancewill be zero and the transfer will fail.

Zellic © 2024 ← Back to Contents Page 16 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Impact

When someone tries to return assets that originated from Astria, the transfer will fail due to the es-
crow balance being zero, meaning once assets are transferred out, they cannot be returned.

Recommendations

The prefix should be removed from the denom before checking the escrow balance.

Remediation

This issuehasbeenacknowledgedbyAstria, and a fixwas implemented in commit b58b65e8 ↗.

Zellic © 2024 ← Back to Contents Page 17 of 62

https://github.com/astriaorg/astria/commit/b58b65e88c6c23f50343f2c09ea8161dbd444233

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3.4. Incorrect channel when checking escrow balance

Target astria-
sequencer/src/ibc/ics20_transfer.rs

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

Whenanasset that originated fromAstria is returned via an IBC transfer, the escrowbalance for that
channel is checked to ensure that the original asset was transferred:

if is_source(source_port, source_channel, &denom, is_refund) {
// sender of packet (us) was the source chain
// subtract balance from escrow account and transfer to user

let escrow_balance = state
.get_ibc_channel_balance(source_channel, denom.id())
.await
.context("failed to get IBC channel balance in

execute_ics20_transfer")?;

let user_balance = state.get_account_balance(recipient,
denom.id()).await?;
state

.put_ibc_channel_balance(
source_channel,
denom.id(),
escrow_balance

.checked_sub(packet_amount)

.ok_or(anyhow::anyhow!(
"insufficient balance in escrow account to transfer tokens"

))?,
)
.context("failed to update escrow account balance in

execute_ics20_transfer")?;

The issue is that the escrow balance is checked using the source_channel instead of the
dest_channel, as the spec stipulates ↗.

Zellic © 2024 ← Back to Contents Page 18 of 62

https://github.com/cosmos/ibc/blob/0238989da88e790ec4daea7214ff3521cc264137/spec/app/ics-020-fungible-token-transfer/README.md?plain=1#L277

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Impact

This could either cause the escrow balance to be zero or the balance for the wrong channel to be
checked, allowing the escrow balance of the wrong channel to be updated.

Recommendations

The escrow balance should be checked using the dest_channel instead of the source_channel.

Remediation

This issuehasbeenacknowledgedbyAstria, and a fixwas implemented in commit b58b65e8 ↗.

Zellic © 2024 ← Back to Contents Page 19 of 62

https://github.com/astriaorg/astria/commit/b58b65e88c6c23f50343f2c09ea8161dbd444233

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3.5. Out-of-bounds access fetching block by hash

Target astria-
sequencer/src/api_state_ext.rs

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

When querying a sequencer block, the rollup transactions are enumerated and added to a vector:

let mut rollup_transactions = Vec::with_capacity(rollup_ids.len());
for (i, id) in rollup_ids.iter().enumerate() {

let key = rollup_data_by_hash_and_rollup_id_key(hash, id);
let raw = self

.get_raw(&key)

.await

.context("failed to read rollup data by block hash and rollup ID from
state")?;
if let Some(raw) = raw {

let raw = raw.as_slice();
let rollup_data = raw::RollupTransactions::decode(raw)

.context("failed to decode rollup data from raw bytes")?;
rollup_transactions[i] = rollup_data;

}
}

The issue is that while the vector has the right capacity, it still has a length of zero and so assigning
to index iwill cause a panic.

Impact

The get_sequencer_block_by_hash function is used by the GetSequencerBlock RPC call, so any-
thing that tries to use this RPC call will recieve an error such as the BlockStream required by the
relayer.

Recommendations

Each element should be pushed to the vector instead of assigning to an index; since it has been pre-
allocatedwith the correct capacity, it should not need to be resized.

Zellic © 2024 ← Back to Contents Page 20 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Remediation

This issuehasbeenacknowledgedbyAstria, and a fixwas implemented in commit 3516a7e3 ↗.

Zellic © 2024 ← Back to Contents Page 21 of 62

https://github.com/astriaorg/astria/commit/3516a7e398dc235017ed8e5bdc62910e7b7e15d0

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3.6. Duplicate rollup ids

Target astria-
sequencer/src/src/bridge/state_ext.rs

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

When fetching the list of rollup IDs for the current block, the DEPOSIT_PREFIX stream is iterated over
and any rollup IDs found are added to a vector.

async fn get_deposit_rollup_ids(&self) -> Result<Vec<RollupId>> {
let mut stream =
std::pin::pin!(self.nonverifiable_prefix_raw(DEPOSIT_PREFIX.as_bytes()));
let mut rollup_ids = Vec::new();
while let Some(Ok((key, _))) = stream.next().await {

// the deposit key is of the form "deposit/{rollup_id}/{nonce}"
let key_str =

String::from_utf8(key).context("failed to convert deposit key to
string")?;

let key_parts = key_str.split('/').collect::<Vec<_>>();
if key_parts.len() != 3 {

continue;
}
let rollup_id_bytes =

hex::decode(key_parts[1]).context("invalid rollup ID hex string")?;
let rollup_id =

RollupId::try_from_slice(&rollup_id_bytes).context("invalid rollup
ID bytes")?;

rollup_ids.push(rollup_id);
}
Ok(rollup_ids)

}

The issue is that if there aremultiple deposits for the same rollup, then the returned vector will con-
tain duplicate rollup ids.

Zellic © 2024 ← Back to Contents Page 22 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Impact

Currently the two places that use deposit_rollup_ids are get_block_deposits and
clear_block_deposits, both of which only cause unneeded computations to be made as the
first is putting the rollup IDs and the deposits into a hashmap and the second is clearing them from
the state.

Recommendations

The rollup IDs should be added to a set instead of a vector to ensure that there are no duplicates, or
documentation should be added to ensure that anyone using the function is aware that there may
be duplicates.

Remediation

This issuehasbeenacknowledgedbyAstria, and a fixwas implemented in commit f9b3bb45 ↗.

Zellic © 2024 ← Back to Contents Page 23 of 62

https://github.com/astriaorg/astria/commit/f9b3bb45a3b534233ae70212447b949691873801

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3.7. Duplicate transaction inconsistency

Target astria-sequencer/src/app.rs

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

When a PrepareProposal request is made to the current proposer, it is possible that the
request may contain duplicate transactions. This is explicitly mentioned in the spec at
https://docs.cometbft.com/v0.37/spec/abci/abci++_methods ↗:

CometBFT does NOT provide any additional validity checks (such as checking for duplicate
transactions).

Normally, this would not be an issue, as even if the duplicate transaction was included, the second
onewould fail as the noncewould be incorrect.

The issue is that when the proposer executes the second transaction in execute_block_data, the
results are stored in the execution_result cache by the transaction hash, replacing the results of
the first transaction.

// store transaction execution result, indexed by tx hash
match self.deliver_tx(signed_tx.clone()).await {

Ok(events) => {
self.execution_result.insert(tx_hash.into(), Ok(events));
signed_txs.push(signed_tx);
validated_txs.push(tx);
block_sequence_data_bytes += tx_sequence_data_bytes;

}
Err(e) => {

debug!(
transaction_hash = %telemetry::display::hex(&tx_hash),
error = AsRef::<dyn std::error::Error>::as_ref(&e),
"failed to execute transaction, not including in block"

);
excluded_tx_count += 1;
self.execution_result.insert(tx_hash.into(), Err(e));

}
}

Zellic © 2024 ← Back to Contents Page 24 of 62

https://docs.cometbft.com/v0.37/spec/abci/abci++_methods

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

This will cause the second transaction to be removed from the list of transactions to be included,
but the first transaction will still be included. When the other validators process the proposal, they
will only see one transaction, which will succeed, causing them to have a different state than the
proposer.

Impact

If thereare threeor fewervalidators, then thiswill causeaconsensus failureas theproposal requires
more than 1/3 of the validators to agree. If there are more than three, then a new proposer will be
chosen and the process will repeat until the duplicate transaction is dropped from themempool.

Recommendations

If a transaction has already been executed and is in the cache, the proposer should not execute it a
second time.

Remediation

This issuehasbeenacknowledgedbyAstria, and a fixwas implemented in commit dfebc587 ↗.

Zellic © 2024 ← Back to Contents Page 25 of 62

https://github.com/astriaorg/astria/commit/dfebc587464597e4eafbdd64e7efa86377078ea4

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3.8. Transfer of zero amounts is allowed

Target astria-
sequencer/src/accounts/state_ext.rs

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

When performing a transfer between Astria accounts, there is no check on the TransferAction to
ensure that theamountbeing transferred is not zero, only that thesendinguserhasabalancegreater
to or equal to amount for the requested asset.

This would not normally be an issue, but in this case it causes an issue with the
get_account_balances function as it loops over all of the stored balances (even if they are
zero) and tries to fetch the get_ibc_asset for each asset ID found:

async fn get_account_balances(&self, address: Address) ->
Result<Vec<AssetBalance>> {

use crate::asset::state_ext::StateReadExt as _;

let prefix = format!("{}/balance/",
storage_key(&address.encode_hex::<String>()));

let mut balances: Vec<AssetBalance> = Vec::new();

let mut stream = std::pin::pin!(self.prefix_keys(&prefix));
while let Some(Ok(key)) = stream.next().await {

// ... [snip]
let asset_id_str = key

.strip_prefix(&prefix)

.context("failed to strip prefix from account balance key")?;
let asset_id_bytes = hex::decode(asset_id_str).context("invalid

asset id bytes")?;

let asset_id = asset::Id::try_from_slice(&asset_id_bytes)
.context("failed to parse asset id from account balance key")?;

let Balance(balance) =
Balance::try_from_slice(&value).context("invalid balance

bytes")?;

// ... [snip]

Zellic © 2024 ← Back to Contents Page 26 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

let denom = self.get_ibc_asset(asset_id).await?;
balances.push(AssetBalance {

denom,
balance,

});
}
Ok(balances)

}

If amade-up asset denomwasused, then the check to get_ibc_assetwill fail, as the asset does not
exist, causing the user to be unable to check their balance.

Impact

Amalicious user can send a zero transfer of a nonexistent asset to another user, causing them to be
unable to check their balance.

Recommendations

A check_stateless check could be added to ensure that the amount being transferred is greater
than zero.

Remediation

This issue has been acknowledged by Astria.

Zellic © 2024 ← Back to Contents Page 27 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3.9. Proposal time-out leads to differing chain states

Target astria-
sequencer/src/accounts/action.rs

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

Whenaprepare_proposal is called for thecurrentproposer, theis_proposerflag is set to true. This
is then checkedwhen processing the proposal so that the execution can be skipped:

pub(crate) async fn prepare_proposal(
&mut self,
prepare_proposal: abci::request::PrepareProposal,
storage: Storage,

) -> anyhow::Result<abci::response::PrepareProposal> {
self.is_proposer = true;
self.update_state_for_new_round(&storage);

// [snip]

pub(crate) async fn process_proposal(
&mut self,
process_proposal: abci::request::ProcessProposal,
storage: Storage,

) -> anyhow::Result<()> {
// if we proposed this block (ie. prepare_proposal was called directly
before this), then
// we skip execution for this `process_proposal` call.
//
// if we didn't propose this block, `self.is_proposer` will be `false`, so
// we will execute the block as normal.
if self.is_proposer {

debug!("skipping process_proposal as we are the proposer for this
block");

self.is_proposer = false;
self.executed_proposal_hash = process_proposal.hash;
return Ok(());

}

Zellic © 2024 ← Back to Contents Page 28 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

The issue is that it is possible for the proposer to time out, causing a round to begin and a new pro-
poser to be chosen. This will leave the old proposer with the is_proposer flag set to true, even
though they are not the current proposer. If the new proposer produces a different block, then the
old proposer will reset the state changes and execute the transactions in deliver_tx, but the com-
mitments will not be checked:

// If we previously executed txs in a different proposal than is being
processed reset

// cached state changes.
if self.executed_proposal_hash != begin_block.hash {

self.update_state_for_new_round(&storage);
}

// [snip]

pub(crate) async fn deliver_tx_after_proposal(
&mut self,
tx: abci::request::DeliverTx,

) -> Option<anyhow::Result<Vec<abci::Event>>> {
self.current_sequencer_block_builder

.as_mut()

.expect(
"begin_block must be called before deliver_tx, thus \

current_sequencer_block_builder must be set",
)
.push_transaction(tx.tx.to_vec());

if self.processed_txs < 2 {
self.processed_txs += 1;
return Some(Ok(vec![]));

}

// When the hash is not empty, we have already executed and cached the
results
if !self.executed_proposal_hash.is_empty() {

let tx_hash: [u8; 32] = sha2::Sha256::digest(&tx.tx).into();
return self.execution_result.remove(&tx_hash);

}

Impact

If a validator times out when proposing a block, they will still think that they are the proposer when
process_proposal is called and automatically vote for the block. If a malicious proposer is able to
createabatchof transactions that causesblockproposals tobeslow (for instanceusing3.12. ↗), then
many validators could be put into this state, causing either a consensus failure or arbitrary commit-

Zellic © 2024 ← Back to Contents Page 29 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

ments to be supplied.

Recommendations

If the is_proposer is set to true when process_proposal is called, the supplied proposer_address
in the request should also be checked to ensure that it has not changed.

Remediation

This issuehasbeenacknowledgedbyAstria, and a fixwas implemented in commit f26440a0 ↗.

Zellic © 2024 ← Back to Contents Page 30 of 62

https://github.com/astriaorg/astria/commit/f26440a0454da0c2c38951baec0d0ecafb0d3ebc

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3.10. Mint action can overflow the balance

Target astria-
sequencer/src/mint/action.rs

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

If the mint feature is enabled, it allows the sudo address tomint arbitrary amounts of thenative asset
to an account:

async fn execute<S: AccountStateWriteExt + AccountStateReadExt>(
&self,
state: &mut S,
_: Address,

) -> Result<()> {
let native_asset = get_native_asset().id();

let to_balance = state
.get_account_balance(self.to, native_asset)
.await
.context("failed getting `to` account balance")?;

state
.put_account_balance(self.to, native_asset, to_balance + self.amount)
.context("failed updating `to` account balance")?;

Ok(())
}

The issue is that to_balance + self.amount could overflow, resetting the balance back to zero.

Impact

If the mint feature is enabled, the sudo account can mint a large amount of the native asset to an
account, causing the balance to overflow and reset to zero.

Recommendations

The new increase_balance helper function should be used to ensure that the balance does not
overflow.

Zellic © 2024 ← Back to Contents Page 31 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Remediation

This issuehasbeenacknowledgedbyAstria, and a fixwas implemented in commit 0c54b993 ↗.

Zellic © 2024 ← Back to Contents Page 32 of 62

https://github.com/astriaorg/astria/commit/0c54b993ddf23a7a3262780352ac9b0f5db35ed7

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3.11. Only some IBC requests can fail

Target astria-
sequencer/src/service/consensus.rs

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

When handling IBC requests, the ABCI specification ↗ mentions that the requests Query, CheckTx,
and DeliverTx can fail and return an error code. An error in any of the other requests is considered
a critical issue, and the applicationmust crash as CometBFT has no correct way to handle an error.

Currently, the handle_request function will return an error for any request that fails, which is then
dropped if it fails to send.

Impact

If an error occurs in a request that is not supposed to fail, the application could be in an inconsistent
state and cause CometBFT to have a consensus failure.

Recommendations

The handle_request handler should use expect on the requests that are not supposed to fail, caus-
ing the application to crash if an error occurs.

Remediation

This issuehasbeenacknowledgedbyAstria, and a fixwas implemented in commit f78f6d85 ↗.

Zellic © 2024 ← Back to Contents Page 33 of 62

https://docs.cometbft.com/v0.37/spec/abci/abci++_basic_concepts#errors
https://github.com/astriaorg/astria/commit/f78f6d858e314fcc99f24ac87434f3768c49647d

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3.12. List of assets in bridge init is unbounded

Target astria-
sequencer/src/bridge/init_bridge_account_action.rs

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

When creating a new Bridge account, the InitBridgeAccountAction is used, which takes a list of
asset IDs that the bridgewill accept:

pub struct InitBridgeAccountAction {
// the rollup ID to register for the sender of this action
pub rollup_id: RollupId,
// the assets accepted by the bridge account
pub asset_ids: Vec<asset::Id>,
// the fee asset which to pay this action's fees with
pub fee_asset_id: asset::Id,

}

The issue is that the only check on the asset_ids is that the length is greater than zero; there is no
check on the length of the list.

Impact

A malicious actor could create a bridge account with a large amount of asset IDs, while still only
paying the standard INIT_BRIDGE_ACCOUNT_FEE fee of 48. When a BridgeLockAction action is per-
formed, the large list needs to be fetched from storage and iterated through to see if the asset ID is
in the list. Since this happens in a check_stateful handler, the actionwill pass the CheckTx handler
andmake it into themempool.

Recommendations

The current check for !self.asset_ids.is_empty() should be moved into the check_stateless
handler, and amaximum length should be enforced.

Zellic © 2024 ← Back to Contents Page 34 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Remediation

This issuehasbeenacknowledgedbyAstria, and a fixwas implemented in commit 89afc238 ↗.

Zellic © 2024 ← Back to Contents Page 35 of 62

https://github.com/astriaorg/astria/commit/89afc2387074cd311109e0d212853967fd39cfd4

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3.13. Duplicate Celestia rollup blob causes panic

Target astria-
conductor/src/celestia/mod.rs

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

When the conductor receives a new sequencer blob from Celestia, it verifies the hash against the
sequencer and then fetches the relevant rollup blobs:

async fn process_sequencer_blob(
client: HttpClient,
verifier: BlockVerifier,
celestia_height: u64,
rollup_namespace: Namespace,
sequencer_blob: CelestiaSequencerBlob,

) -> eyre::Result<ReconstructedBlock> {
verifier

.verify_blob(&sequencer_blob)

.await

.wrap_err("failed validating sequencer blob retrieved from celestia")?;
let mut rollup_blobs = client

.get_rollup_blobs_matching_sequencer_blob(
celestia_height,
rollup_namespace,
&sequencer_blob,

)
.await
.wrap_err("failed fetching rollup blobs from celestia")?;

debug!(
%celestia_height,
number_of_blobs = rollup_blobs.len(),
"received rollup blobs from Celestia"

);
ensure!(

rollup_blobs.len() <= 1,
"received more than one celestia rollup blob for the given namespace

and height"
);

Zellic © 2024 ← Back to Contents Page 36 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

The issue is that Celestia has no restrictions on duplicate blobs, so it is possible for a duplicate blob
to be stored for the rollup at the specified height. This would cause the ensure block checking the
length of rollup_blobs to panic, crashing the conductor.

Impact

Amalicious actor could sendaduplicate valid rollupblob toCelestia, causing the conductor to panic
and crash.

Recommendations

The conductor should either return the first blob for the given namespace and height or explicitly
check for duplicates. Alternatively, the check could be removed and let the canonical chain handle
the duplicate blobs.

Remediation

We have reviewed the described changes and examined the code in pull request 946 ↗. The pro-
posed modifications should resolve the original issue. However, due to the substantial amount of
new and refactored code, we are unable to fully review the entire pull request within the allocated
remediation time.

Zellic © 2024 ← Back to Contents Page 37 of 62

https://github.com/astriaorg/astria/pull/946

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

3.14. TXs that are too large are rejectedwithout error

Target astria-
composer/src/searcher/executor/bundle_factory/mod.rs

Category CodingMistakes Severity Informational

Likelihood Low Impact Informational

Description

The Composer component's Collector will collect transactions from rollup nodes and send them
to the Executor, which will attempt to construct bundles of transactions to be submitted to the Se-
quencer.

In this case, if one of the rollup transactions is too large, the Executor simply drops the transaction
and continues on as if nothing happened.

pub(super) async fn run_until_stopped(mut self) -> eyre::Result<()> {
// [...]

// receive new seq_action and bundle it
Some(seq_action) = self.serialized_rollup_transactions_rx.recv() => {

let rollup_id = seq_action.rollup_id;
if let Err(e) = bundle_factory.try_push(seq_action) {

warn!(
rollup_id = %rollup_id,
error = &e as &StdError,
"failed to bundle sequence action: too large. sequence

action is dropped."
);

}
}
// [...]

}

/// Buffer `seq_action` into the current bundle. If the bundle won't fit
`seq_action`, flush

/// `curr_bundle` into the `finished` queue and start a new bundle
pub(super) fn try_push(

&mut self,
seq_action: SequenceAction,

) -> Result<(), BundleFactoryError> {
let seq_action_size = estimate_size_of_sequence_action(&seq_action);

Zellic © 2024 ← Back to Contents Page 38 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

match self.curr_bundle.push(seq_action) {
Err(SizedBundleError::SequenceActionTooLarge(_seq_action)) => {

// reject the sequence action if it is larger than the max bundle
size

Err(BundleFactoryError::SequenceActionTooLarge {
size: seq_action_size,
max_size: self.curr_bundle.max_size,

})
}
// [...]

}
}

The issue here is that the user that submitted the transaction would end up seeing that it success-
fully submitted to the rollup node, but then it would never get executed.

Impact

If the self.curr_bundle.max_size is not set sufficiently high enough, this can occur for seemingly
normal transactions and thus lead to a bad experience for the user.

Recommendations

Ideally, some type of an error should be returned to the user when they are submitting the transac-
tion to the rollup node. This can be done by setting a transaction size limit on the rollup node so that
such transactions cannot be submitted there.

Otherwise, this should be documented so that a user knows that they are able to manually submit
such transactions to the Sequencer. It is only the composer that cannot submit such a transaction
to the Sequencer.

Remediation

The client acknowledged this issue and stated that the max_size will be set to ~400KB, which is
about the maximum size of a block on the Sequencer chain. They are aware of the impact on user
experience fromnot returning agooderror to theuser, but they accept the risk because this limitwill
never be hit by legitimate transactions from legitimate users.

Zellic © 2024 ← Back to Contents Page 39 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. Suggestions for astria-merkle

While auditing the astria-merkle crate, we found some areas that could be improved in order to
make the cratemore ergonomic and less error-prone.

• The Audit struct itself should be marked with #[must_use] to ensure that the
caller actually uses the struct. This will trigger a lint error for statements such
as proof.audit().with_leaf(leaf).with_root(root_hash);, similar to Au-
dit::perform.

• TheTree::nodes is currently aVec<u8>, but everywhere that it is used, it is converted into
a Vec<[u8; 32]> by slicing 32-byte ranges of it, and the length of the tree is considered
1/32 of the byte length. Instead, it could be stored as a Vec<[u8; 32]> to avoid the need
for these conversions.

• TheuseofOption for thefieldsofastria_merkle::{LeafBuilder,audit::LeafBuilder}
is unnecessary, and removing them eliminates some possible panics from the API.

Zellic © 2024 ← Back to Contents Page 40 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

5. ThreatModel This provides a full threat model description for various functions. As time permitted, we analyzed
each function in the crates and created a written threat model for some critical functions. A threat
model documents a given function’s externally controllable inputs and how an attacker could lever-
age each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in this
section does not necessarily suggest that a function is safe.

5.1. Component: Composer

The Composer's main responsibility is to watch a rollup node for transactions and compose them
into transactions to be submitted to the Sequencer.

The Composer is mainly composed of a component called the Searcher, which itself has two sub-
components:

1. TheCollector—Collects transactions from the rollup chain and sends them to theExecu-
tor.

2. The Executor — Bundles up transactions received from the collector and then executes
them on the Sequencer chain.

Subcomponent: Collector

The Collector subcomponent watches rollup chains for transactions. Each transaction is then sent
to the Executor subcomponent.

Currently, there is only onecollector called theGethCollector. This component subscribes to aGeth
node and watches for new transactions. Each transaction is converted to a SequenceAction sent
through to the Executor.

The excerpt of code that handles this is shown below:

while let Some(tx) = tx_stream.next().await {
let tx_hash = tx.hash;
debug!(transaction.hash = %tx_hash, "collected transaction from rollup");
let data = tx.rlp().to_vec();
let seq_action = SequenceAction {

rollup_id,
data,
fee_asset_id: default_native_asset_id(),

};

match new_bundles
.send_timeout(seq_action, Duration::from_millis(500))
.await

Zellic © 2024 ← Back to Contents Page 41 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

{
// [...]

}
}

Subcomponent: Executor

The Executor subcomponent receives SequenceActions from the Collector and attempts to bundle
them up into a vector of Sequence actions. Once the bundle is considered full (i.e., it has reached
themaximum size), it is submitted to the Sequencer.

Rollup transactions are rejected if they are over a certain max_size limit. In this case, "rejected"
means that the transaction is never submitted to the Sequencer. This would mean that the user
who made the transaction would see it submitted to the rollup node successfully, but then not be
executed at all, which can be somewhat confusing. See Finding 3.14. ↗ for more information.

5.2. Component: Conductor

The Conductor's main responsibility is to connect the shared Sequencer to the execution layer,
where theexecution layercanbeanynode thatexecutes transactionsand returnsanexecutionhash
(for example, Geth).

The conductor receives blocks in two ways — either from the shared Sequencer directly or from
the data-availability layer (i.e., Celestia). Blocks received from the shared sequencer are filtered for
transactions thatmatch theConductor's rollup chain and then sent to the execution layer for execu-
tion.

Transactions received fromtheSequenceraremarkedas "soft" as soonas theyareexecuted. These
transactions are not considered finalized until the same block is also fetched from Celestia, which
means that Celestia acts as the ultimate source of truth in this scenario.

The three subcomponents of the Conductor are as follows:

1. The Executor

2. The Sequencer Reader

3. The Celestia Reader

Subcomponent: Executor

The Executor essentially does two things in parallel:

1. It receives soft blocks from the sequencer and executes the transactions in them imme-
diately, and ensures that the block height matches the expected height. These executed
blocks are then inserted into a list to await finalization.

Zellic © 2024 ← Back to Contents Page 42 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

2. It receivesfirmblocks fromthedata-availability layer (i.e., Celestia). Theseblocksareonly
executed if a corresponding soft block has not already been executed. Firm blocks are
considered finalized.

For execution, the block is sent to the rollup execution layer node, which can be basically anything
as long as it returns an execution hash. For example, a node like Geth or Erigon can be used for
EVM-compatible transactions.

Subcomponent: Sequencer Reader

The Sequencer Reader component uses a Sequencer node's gRPC to fetch sequencer blocks.
These blocks are sent through to the Executor marked as soft. If the executor channel is full, the
blocks are scheduled and handled later.

Subcomponent: Celestia Reader

The Celestia Reader component uses anHTTP client to fetch blobs fromCelestia periodically. Sim-
ilar to the Sequencer Reader component, these blocks are sent through to the Executor, except that
they aremarked as firm. If the executor channel is full, the blocks are scheduled and handled later.

Additionally, this component also subscribes to receive block headers from Celestia using a Web-
Socket connection. These block headers are used to determine if there is a new block height avail-
able that should be fetched. This is essentially an optimization that helps this component fetch the
latest blocks at all times.

Finally, if thesubscription fails forany reason, itwill triggera resubscription toensure thecomponent
is able to keep fetching block headers as needed.

5.3. Component: Merkle

Astria'sMerkle tree implementation is usedby theother components toprove inclusionof rollup IDs
and transactions in blocks.

The Tree is a dense array of SHA-256 hashes, with even indexes being hashes of leaves and odd
indexes being hashes of internal nodes. An implicit indexing scheme based on left-perfect binary
trees is used, which permits appends with amortized O(1) allocations and O(log2(n)) rehashes.
Leaves have a zero byte prefixed to the hash state, and internal nodes have one byte prefixed to
their hash state.

The proof that some leaf data is included in the tree is a list of log2(n) hashes of its siblings going
up to the root. An inclusion proof is verified by hashing the leaf data, hashing each pair of siblings
(implicitly walking the tree), and comparing the resulting hash to the root.

Zellic © 2024 ← Back to Contents Page 43 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

5.4. Component: Sequencer Relayer

TheSequencerRelayer'smain responsibility is to fetchblocks from theSequencer and submit them
to Celestia.

It contains a couple subcomponents:

1. The API server

2. The Relayer

Subcomponent: API Server

The API server has three routes:

1. /healthz— Returns whether the relayer state is healthy, which is true when the relayer
is connected to both the Sequencer and Celestia.

2. /readyz — Returns whether the relayer state is "ready", which is true if the relayer cur-
rently has a block from the sequencer and a data-availability height fromCelestia.

3. /status—Returns the relayer_state as a JSON object.

The relayer_state object looks as follows:

pub(crate) struct StateSnapshot {
ready: bool,

celestia_connected: bool,
sequencer_connected: bool,

latest_confirmed_celestia_height: Option<u64>,

latest_fetched_sequencer_height: Option<u64>,
latest_observed_sequencer_height: Option<u64>,
latest_requested_sequencer_height: Option<u64>,

}

Subcomponent: Relayer

TheRelayer'smain responsibility is to fetchblocks fromtheSequencerusinggRPCandsubmit them
to Celestia.

The submitter task is sent blocks asynchronously as they are fetched from the Sequencer. It con-
verts SequencerBlock objects to Blobs that can be submitted to Celestia. This Blob structure is as
follows:

Zellic © 2024 ← Back to Contents Page 44 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

pub struct Blob {
/// A [`Namespace`] the [`Blob`] belongs to.
pub namespace: Namespace,
/// Data stored within the [`Blob`].
#[serde(with
= "celestia_tendermint_proto::serializers::bytes::base64string")]
pub data: Vec<u8>,
/// Version indicating the format in which [`Share`]s should be created
from this [`Blob`].
///
/// [`Share`]: crate::share::Share
pub share_version: u8,
/// A [`Commitment`] computed from the [`Blob`]s data.
pub commitment: Commitment,

}

The converted Blobs are then submitted to Celestia using an HTTP client. It automatically re-
tries submission for a while in case of unexpected failures, but ultimately it will quit after u32::MAX
tries.

5.5. Component: Sequencer

The Astria Sequencer is a component that is shared across all rollup chains. It builds sequencer
blocks out of transactionsmade on each rollup chain. It supports the following actions:

pub enum Action {
Sequence(SequenceAction),
Transfer(TransferAction),
ValidatorUpdate(tendermint::validator::Update),
SudoAddressChange(SudoAddressChangeAction),
Mint(MintAction),
Ibc(IbcRelay),
Ics20Withdrawal(Ics20Withdrawal),
IbcRelayerChange(IbcRelayerChangeAction),
FeeAssetChange(FeeAssetChangeAction),
InitBridgeAccount(InitBridgeAccountAction),
BridgeLock(BridgeLockAction),

}

Each transaction on a rollup chain is defined by the following structure in the sequencer, where the
data argument contains the transaction data, which can be in any format:

pub struct SequenceAction {
pub rollup_id: RollupId,

Zellic © 2024 ← Back to Contents Page 45 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

pub data: Vec<u8>,
/// asset to use for fee payment.
pub fee_asset_id: asset::Id,

}

Ineachsequencerblock, therecanbe transactions frommultiple rollupchains. It is the responsibility
of the Conductor for each rollup chain to filter for transactions for their specific chain in order to
execute and finalize them later on.

The Sequencer also supports a two gRPC queries:

1. GetSequencerBlock—Used to fetch a Sequencer block at a specific height.

2. GetFilteredSequencerBlock— Used to fetch Sequencer blocks that match a subset of
rollup IDs. The returned block contains transactions and other metadata for those rollup
chains.

Action: Sequence

The Sequence action is used by rollup chains to submit transaction data to the Sequencer. This data
is then included into Sequencer blocks.

The definition of this action is as follows:

pub struct SequenceAction {
pub rollup_id: RollupId,
pub data: Vec<u8>,
/// asset to use for fee payment.
pub fee_asset_id: asset::Id,

}

Ineachsequencerblock, therecanbe transactions frommultiple rollupchains. It is the responsibility
of the Conductor for each rollup chain to filter for transactions for their specific chain in order to
execute and finalize them later on.

Action: Transfer

The Transfer action is used to transfer assets between accounts on the Sequencer chain. These
assets are generally used to pay fees for other actions on the Sequencer chain. Its definition is as
follows:

pub struct TransferAction {
pub to: Address,
pub amount: u128,
// asset to be transferred.

Zellic © 2024 ← Back to Contents Page 46 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

pub asset_id: asset::Id,
/// asset to use for fee payment.
pub fee_asset_id: asset::Id,

}

Action: ValidatorUpdate

The ValidatorUpdate action is used to notify Tendermint about any changes to the validator set.
This is a sudo-only accessible action.

The definition of this action is as follows:

pub struct Update {
/// Validator public key
#[serde(deserialize_with = "deserialize_public_key")]
pub pub_key: PublicKey,

/// New voting power
#[serde(default)]
pub power: vote::Power,

}

Action: SudoAddressChange

The SudoAddressChange action is used to change the address of the sudo user. This action can only
be executed by the current sudo user.

The definition of this action is as follows:

pub struct SudoAddressChangeAction {
pub new_address: Address,

}

Action: Mint

The Mint action is used by the sudo user tomint Sequencer native assets to an arbitrary address.

The definition of this action is as follows:

pub struct MintAction {
pub to: Address,
pub amount: u128,

Zellic © 2024 ← Back to Contents Page 47 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

}

Action: Ics20Withdrawal

The Ics20Withdrawal action is used to withdraw an IBC asset from a source chain to a destination
chain. This action performs checks to ensure the user has the required balance of the asset being
transferred as well as the fee asset.

The definition of this action is as follows:

pub struct Ics20Withdrawal {
// a transparent value consisting of an amount and a denom.
amount: u128,
denom: Denom,
// the address on the destination chain to send the transfer to.
destination_chain_address: String,
// an Astria address to use to return funds from this withdrawal
// in the case it fails.
return_address: Address,
// the height (on Astria) at which this transfer expires.
timeout_height: IbcHeight,
// the unix timestamp (in nanoseconds) at which this transfer expires.
timeout_time: u64,
// the source channel used for the withdrawal.
source_channel: ChannelId,
// the asset to use for fee payment.
fee_asset_id: asset::Id,

}

Action: IbcRelayerChange

The IbcRelayerChange action is used by the sudo user to add and/or remove IBC relayers.

The definition of this action is as follows, where the Addition() enum is used to add a new relayer,
while the Removal() enum is used remove a relayer:

pub enum IbcRelayerChangeAction {
Addition(Address),
Removal(Address),

}

Zellic © 2024 ← Back to Contents Page 48 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Action: FeeAssetChange

The FeeAssetChange action is used by the sudo user to add and/or remove fee assets.

The definition of this action is as follows, where the Addition() enum is used to add a fee asset,
while the Removal() enum is used remove a fee asset:

pub enum FeeAssetChangeAction {
Addition(asset::Id),
Removal(asset::Id),

}

Action: InitBridgeAccount

The InitBridgeAccount action is used to create a bridge account for a new rollup chain. This ac-
count can then be used as a bridge to the rollup chain using the BridgeLock action.

The definition of this action is as follows:

pub struct InitBridgeAccountAction {
// the rollup ID to register for the sender of this action
pub rollup_id: RollupId,
// the assets accepted by the bridge account
pub asset_ids: Vec<asset::Id>,
// the fee asset which to pay this action's fees with
pub fee_asset_id: asset::Id,

}

Action: BridgeLock

TheBridgeLockaction isused to transfer assets to thebridgeaccountof a specific rollupchain. This
effectively locks theassets into thebridge, allowing for the rollupchain tomint correspondingassets
to the user's account on the rollup chain.

It is important tonote that theTransferactioncannotbeused to transfer tokens toabridgeaccount.
Consequently, the BridgeLock action cannot be used to transfer tokens to a nonbridge account.

The definition of this action is as follows:

pub struct BridgeLockAction {
pub to: Address,
pub amount: u128,
// asset to be transferred.
pub asset_id: asset::Id,
// asset to use for fee payment.

Zellic © 2024 ← Back to Contents Page 49 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

pub fee_asset_id: asset::Id,
// the address on the destination chain to send the transfer to.
pub destination_chain_address: String,

}

Action: Ibc

The Ibc action encapsulates IBCmessages that manage clients, channels, and connections.

Message: CreateClient

The CreateClient messages create a representation of a remote Tendermint light client with a
specified initial consensus state— client_statemust deserialize to a ClientState value, and con-
sensus_statemust deserialize to a ConsensusState value. The ClientState fields are checked to
satisfy additional constraints (e.g., that the durations are nonzero (without which, updates would be
rejected) and that the trust level is between 1

3 and 1 (without which, updates would be unsound).

pub struct MsgCreateClient {
pub client_state: Any,
pub consensus_state: Any,
pub signer: String,

}

pub struct ClientState {
pub chain_id: ChainId,
pub trust_level: TrustThreshold,
pub trusting_period: Duration,
pub unbonding_period: Duration,
pub max_clock_drift: Duration,
pub latest_height: Height,
pub proof_specs: Vec<ProofSpec>,
pub upgrade_path: Vec<String>,
pub allow_update: AllowUpdate,
pub frozen_height: Option<Height>,

}

pub struct ConsensusState {
pub timestamp: Time,
pub root: MerkleRoot,
pub next_validators_hash: Hash,

}

Zellic © 2024 ← Back to Contents Page 50 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Message: UpdateClient

The UpdateClient messages update the state of an existing remote Tendermint light client —
client_messagemust deserialize to a Tendermint Header, and the header must be valid according
to the previous client and consensus states.

pub struct MsgUpdateClient {
pub client_id: ClientId,
pub client_message: Any,
pub signer: String,

}

pub struct Header {
pub signed_header: SignedHeader, // contains the commitment root
pub validator_set: ValidatorSet, // the validator set that signed Header
pub trusted_height: Height, // the height of a trusted header seen by
client less than or equal to Header
// TODO(thane): Rename this to trusted_next_validator_set?
pub trusted_validator_set: ValidatorSet, // the last trusted validator set
at trusted height

}

Message: UpgradeClient

The UpgradeClientmessages upgrade an existing remote Tendermint light client to a new version
— client_statemust deserialize to a ClientState value, and consensus_statemust deserialize
to a ConsensusState value, as in CreateClient. The client must have opted into being upgradable
by setting an upgrade_path in CreateClient, which is used as a path into theMerkle proofs to ver-
ify that the new replacement client_state and consensus_statewere committed to by the most
recently validated consensus state.

pub struct MsgUpgradeClient {
// client unique identifier
pub client_id: ClientId,
// Upgraded client state
pub client_state: Any,
// Upgraded consensus state, only contains enough information
// to serve as a basis of trust in update logic
pub consensus_state: Any,
// proof that old chain committed to new client
pub proof_upgrade_client: RawMerkleProof,
// proof that old chain committed to new consensus state
pub proof_upgrade_consensus_state: RawMerkleProof,
// signer address

Zellic © 2024 ← Back to Contents Page 51 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

pub signer: String,
}

Message: SubmitMisbehavior

The SubmitMisbehaviourmessages allow a node that notices certain forms of misbehavior (either
producing twoblocks for the same timestampor including twoblocks out of order) on a remote Ten-
dermint client to alert other nodes, freezing their representations of the misbehaving node to pre-
vent further divergence.

pub struct MsgSubmitMisbehaviour {
/// client unique identifier
pub client_id: ClientId,
/// misbehaviour used for freezing the light client
pub misbehaviour: ProtoAny,
/// signer address
pub signer: String,

}

pub struct Misbehaviour {
pub client_id: ClientId,
pub header1: Header,
pub header2: Header,

}

Message: ConnectionOpenInit

Messages ConnectionOpenInit, ConnectionOpenTry, ConnectionOpenAck, and ConnectionOpen-
Confirm form a handshake for establishing a bidirectional ICS-003 connection between two chains
(henceforth A and B), such that each chain represents the other as a client and that each has knowl-
edge of the corresponding client and connection IDs.

Message ConnectionOpenInit assigns the next available connection ID on A for the (A, B) connec-
tion pair as the part of the path in A's state to store the ConnectionEnd (with State::Init) for the
subsequentmessages to reference in proofs.

pub struct MsgConnectionOpenInit {
/// ClientId on chain A that the connection is being opened for
pub client_id_on_a: ClientId,
pub counterparty: Counterparty,
pub version: Option<Version>,
pub delay_period: Duration,
pub signer: String,

Zellic © 2024 ← Back to Contents Page 52 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

}

pub struct ConnectionEnd {
pub state: State,
pub client_id: ClientId,
pub counterparty: Counterparty,
pub versions: Vec<Version>,
pub delay_period: Duration,

}

pub enum State {
Uninitialized = 0isize,
Init = 1isize,
TryOpen = 2isize,
Open = 3isize,

}

pub struct Counterparty {
pub client_id: ClientId,
pub connection_id: Option<ConnectionId>,
pub prefix: MerklePrefix,

}

Message: ConnectionOpenTry

Message ConnectionOpenTry has B verify that the following are committed to in A's state:

• The ConnectionEnd constructed from the data in the ConnectionOpenTrymessage (with
State::Init) at the corresponding path based on A's connection ID for (A, B)

• B's client state is committed to by A at the corresponding path for B's client ID on A
• B's consensus state is committed to by A at the corresponding path for B's client ID on A

B allocates its own connection ID for (A, B) and stores the corresponding ChannelEnd (with
State::TryOpen) in its state under that ID, with a compatible version selected from A's declared
supported versions.

pub struct MsgConnectionOpenTry {
/// ClientId on B that the connection is being opened for
pub client_id_on_b: ClientId,
/// ClientState of client tracking chain B on chain A
pub client_state_of_b_on_a: Any,
/// ClientId, ConnectionId and prefix of chain A
pub counterparty: Counterparty,
/// Versions supported by chain A
pub versions_on_a: Vec<Version>,

Zellic © 2024 ← Back to Contents Page 53 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

/// proof of ConnectionEnd stored on Chain A during ConnOpenInit
pub proof_conn_end_on_a: MerkleProof,
/// proof that chain A has stored ClientState of chain B on its client
pub proof_client_state_of_b_on_a: MerkleProof,
/// proof that chain A has stored ConsensusState of chain B on its client
pub proof_consensus_state_of_b_on_a: MerkleProof,
/// Height at which all proofs in this message were taken
pub proofs_height_on_a: Height,
/// height of latest header of chain A that updated the client on chain B
pub consensus_height_of_b_on_a: Height,
pub delay_period: Duration,
pub signer: String,
pub proof_consensus_state_of_b: Option<MerkleProof>,

#[deprecated(since = "0.22.0")]
/// Only kept here for proper conversion to/from the raw type
pub previous_connection_id: String,

}

Message: ConnectionOpenAck

Message ConnectionOpenAck has A check that it has a ConnectionEnd with B in State::Init and
that the version B chose is one of its supported versions.

A then verifies that the following are committed to in B's state:

• The ConnectionEnd constructed from the data in the ConnectionOpenTrymessage (with
State::TryOpen), at the corresponding path based on B's connection id for (A, B)

• A's client state is committed to by B at the corresponding path for A's client ID on B
• A's consensus state is comitted to by B at the corresponding path for A's client ID on B

A then updates its ConnectionEnd to State::Open or State::TryOpen, with the agreed-on version
and with B's connection ID for (A, B) that it committed to (replacing the one provided in Connec-
tionOpenInit's counterparty).

pub struct MsgConnectionOpenAck {
/// ConnectionId that chain A has chosen for it's ConnectionEnd
pub conn_id_on_a: ConnectionId,
/// ConnectionId that chain B has chosen for it's ConnectionEnd
pub conn_id_on_b: ConnectionId,
/// ClientState of client tracking chain A on chain B
pub client_state_of_a_on_b: Any,
/// proof of ConnectionEnd stored on Chain B during ConnOpenTry
pub proof_conn_end_on_b: MerkleProof,
/// proof of ClientState tracking chain A on chain B

Zellic © 2024 ← Back to Contents Page 54 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

pub proof_client_state_of_a_on_b: MerkleProof,
/// proof that chain B has stored ConsensusState of chain A on its client
pub proof_consensus_state_of_a_on_b: MerkleProof,
/// Height at which all proofs in this message were taken
pub proofs_height_on_b: Height,
/// height of latest header of chain A that updated the client on chain B
pub consensus_height_of_a_on_b: Height,
/// optional proof of the consensus state of the host chain, see:
<https://github.com/cosmos/ibc/pull/839>
host_consensus_state_proof: Option<MerkleProof>,
pub version: Version,
pub signer: String,

}

Message: ConnectionOpenConfirm

Message ConnectionOpenConfirm has B check that its ConnectionEnd is in State::TryOpen, then
verifies that A has committed to a ConnectionEnd in State::Open with the corresponding data in
the ConnectionOpenConfirmmessage. Then updates its ConnectionEnd to State::Open. This con-
cludes the handshake.

pub struct MsgConnectionOpenConfirm {
/// ConnectionId that chain B has chosen for it's ConnectionEnd
pub conn_id_on_b: ConnectionId,
/// proof of ConnectionEnd stored on Chain A during ConnOpenInit
pub proof_conn_end_on_a: MerkleProof,
/// Height at which `proof_conn_end_on_a` in this message was taken
pub proof_height_on_a: Height,
pub signer: String,

}

Message: ChannelOpenInit

Messages ChannelOpenInit, ChannelOpenTry, ChannelOpenAck, and ChannelOpenConfirm form a
handshake for establishingbidirectional ICS-004data channels betweenchains that are transitively
connected by ICS-003 connections. Currently penumbra-ibc only supports channels with exactly
one connection. That is, for a channel to be established between A and B, there must be a direct
connection between A and B rather than connections between (A, C) and (C, B). The AppHandler
trait additionally allows application-specific checks to be added to each step of the handshake if the
port ID is specified as "transfer" (e.g., penumbra-shielded-pool and astria-sequencer's ICS-020
implementations enforce that their channels are unordered through these callbacks).

ChannelOpenInit has A check

Zellic © 2024 ← Back to Contents Page 55 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

• that the connection to be established is exactly one hop,
• that the specified (channel_id, port_id_on_a) is unused in A's state with the next avail-
able channel_id (this check ensures ChannelOpenInit is idempotent/immune to replay
attacks), and

• that an (A, B) connection exists in A's state (but not necessarily in State::Open, to reduce
the number of round trips when establishing a connection and channel on that connec-
tion concurrently).

A then generates the next sequential channel ID, stores a ChannelEnd in State::Init in its state
under (channel_id, port_id_on_a), and initializes its {send,recv,ack} sequence numbers to 1.

pub struct MsgChannelOpenInit {
pub port_id_on_a: PortId,
pub connection_hops_on_a: Vec<ConnectionId>,
pub port_id_on_b: PortId,
pub ordering: Order,
pub signer: String,
/// Allow a relayer to specify a particular version by providing a
non-empty version string
pub version_proposal: Version,

}

pub struct ChannelEnd {
pub state: State,
pub ordering: Order,
pub remote: Counterparty,
pub connection_hops: Vec<ConnectionId>,
pub version: Version,

}

pub struct Counterparty {
pub port_id: PortId,
pub channel_id: Option<ChannelId>,

}

pub enum Order {
None = 0isize,
Unordered = 1isize,
Ordered = 2isize,

}

pub enum State {
Uninitialized = 0isize,
Init = 1isize,
TryOpen = 2isize,
Open = 3isize,

Zellic © 2024 ← Back to Contents Page 56 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Closed = 4isize,
}

Message: ChannelOpenTry

Message ChannelOpenTry has B check

• that the connection to be established is exactly one hop, and
• that A has committed a ChannelEnd in State::Initwith the provided ordering and a sin-
gle connection to B.

B does not check that the port_id_on_b specified by A is free in B's state, which is fine since the
ChannelEnds are stored under a (ChannelId, PortId) pair and the ChannelId is fresh.

B then generates its next free channel ID, creates a ChannelEnd in State::TryOpen, stores it in its
state under the specified port ID, and initializes its {send,recv,ack} sequence numbers to 1.

pub struct MsgChannelOpenTry {
pub port_id_on_b: PortId,
pub connection_hops_on_b: Vec<ConnectionId>,
pub port_id_on_a: PortId,
pub chan_id_on_a: ChannelId,
pub version_supported_on_a: Version,
pub proof_chan_end_on_a: MerkleProof,
pub proof_height_on_a: Height,
pub ordering: Order,
pub signer: String,

#[deprecated(since = "0.22.0")]
/// Only kept here for proper conversion to/from the raw type
pub previous_channel_id: String,
#[deprecated(since = "0.22.0")]
/// Only kept here for proper conversion to/from the raw type
pub version_proposal: Version,

}

Message: ChannelOpenAck

ChannelOpenAck has A check

• that its ChannelEnd is in State::Init or State::TryOpen,
• that its (A, B) ConnectionEnd is in State::Open, and
• that B has committed to a ChannelEnd in State::TryOpen with data consistent with the
expected new state.

Zellic © 2024 ← Back to Contents Page 57 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

A then sets its ChannelEnd state to State::Open and updates the channel ID/version to match B's
state.

pub struct MsgChannelOpenAck {
pub port_id_on_a: PortId,
pub chan_id_on_a: ChannelId,
pub chan_id_on_b: ChannelId,
pub version_on_b: Version,
pub proof_chan_end_on_b: MerkleProof,
pub proof_height_on_b: Height,
pub signer: String,

}

Message: ChannelOpenConfirm

ChannelOpenConfirm has B check

• that its ChannelEnd is in State::TryOpen,
• that its (A, B) ConnectionEnd is in State::Open, and
• thatAhas committed to a ChannelEnd in State::Openwith data consistentwithB's state.

B then sets its ChannelEnd state to State::Open. This concludes the handshake.

pub struct MsgChannelOpenConfirm {
pub port_id_on_b: PortId,
pub chan_id_on_b: ChannelId,
pub proof_chan_end_on_a: MerkleProof,
pub proof_height_on_a: Height,
pub signer: String,

}

Message: ChannelCloseInit

Both ChannelCloseInit and ChannelCloseConfirm form a handshake for closing an existing open
channel.

For ChannelCloseInit, A checks that the channel is not already in State::Closed and that the (A,
B) connection is in State::Open, then sets the channel to State::Closed.

pub struct MsgChannelCloseInit {
pub port_id_on_a: PortId,
pub chan_id_on_a: ChannelId,
pub signer: String,

Zellic © 2024 ← Back to Contents Page 58 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

}

Message: ChannelCloseConfirm

For ChannelCloseConfirm, B checks that the channel is not already in State::Closed and that the
(A, B) connection is in State::Open, and it verifies that A's state contains the channel in a form con-
sistent with B's state but with the state changed to State::Closed, then sets its own channel to
State::Closed.

pub struct MsgChannelCloseConfirm {
pub port_id_on_b: PortId,
pub chan_id_on_b: ChannelId,
pub proof_chan_end_on_a: MerkleProof,
pub proof_height_on_a: Height,
pub signer: String,

}

Message: RecvPacket

Message RecvPacket delivers a packet along an existing (A, B) channel. Without loss of generality,
messages are said to be sent from A to B, but since the channel is bidirectional, these are not the
same as the A and B in channel establishment.

When receiving a packet, B checks

• that the (A, B) channel is in State::Open,
• that thepacket's port andchannel IDsmatch thechannel's sender's port andchannel IDs,
• that the (A, B) connection is in State::Open,
• that the packet has not timed out,
• that the packet was committed to in A's state,
• if the channel is ordered, that its sequence number matches B's recv sequence number,
and

• if the channel is unordered, that it has not already been processed.

B then increments its recv sequence number (for ordered channels) or marks the packet as pro-
cessed (for unordered channels).

pub struct MsgRecvPacket {
/// The packet to be received
pub packet: Packet,
/// Proof of packet commitment on the sending chain
pub proof_commitment_on_a: MerkleProof,
/// Height at which the commitment proof in this message were taken

Zellic © 2024 ← Back to Contents Page 59 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

pub proof_height_on_a: Height,
/// The signer of the message
pub signer: String,

}

pub struct Packet {
pub sequence: Sequence,
pub port_on_a: PortId,
pub chan_on_a: ChannelId,
pub port_on_b: PortId,
pub chan_on_b: ChannelId,
pub data: Vec<u8>,
pub timeout_height_on_b: TimeoutHeight,
pub timeout_timestamp_on_b: Timestamp,

}

Message: Acknowledgement

An Acknowledgementmessage tells A that B received a packet fromA at a particular time.

When receiving an acknowledgment, A checks

• that the (A, B) channel is in State::Open,
• that the acknowledged packet's port and channel IDsmatch the channel's receiver's IDs,
• that the (A, B) connection is in State::Open,
• that A committed to the claimed received packet,
• that the send of the acknowledgment of the packet is in B's state, and
• if the channel is ordered, that its sequence numbermatches A's ack sequence number.

If the channel is ordered, A then increments its ack sequence number.

A then deletes the packet from its set of pending packets it has sent but not acknowledged.

pub struct MsgAcknowledgement {
pub packet: Packet,
pub acknowledgement: Vec<u8>,
/// Proof of packet acknowledgement on the receiving chain
pub proof_acked_on_b: MerkleProof,
/// Height at which the commitment proof in this message were taken
pub proof_height_on_b: Height,
pub signer: String,

}

Zellic © 2024 ← Back to Contents Page 60 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

Message: Timeout

A Timeoutmessage tells A that a packet it sent to B has not been received by the packet's expiration
time.

When receiving a timeout, A checks

• that the (A, B) channel is in State::Open,
• that the packet's port and channel IDsmatch the channel's receiver's IDs,
• that the (A, B) connection exists,
• that B's latest state has a later time than the packet's expiry,
• that A committed to the claimed packet,
• if the channel is ordered, that B's recv sequence number does notmatch the packet, and
• if the channel is unordered, that the packet receipt is absent from B's state.

A then deletes the packet from its set of pending packets it has sent but not acknowledged, and if
the channel is ordered, closes it.

pub struct MsgTimeout {
pub packet: Packet,
pub next_seq_recv_on_b: Sequence,
pub proof_unreceived_on_b: MerkleProof,
pub proof_height_on_b: Height,
pub signer: String,

}

Message: Unknown

Messages that are not one of the above types are encapsulated into the Unknown variant, and such
messages are rejected.

pub enum IbcRelay {
// ...
Unknown(pbjson_types::Any),

}

Zellic © 2024 ← Back to Contents Page 61 of 62

Astria Shared Sequencer Blockchain Security Assessment April 22, 2024

6. Assessment Results At the time of our assessment, the reviewed codewas not deployed for production use.

During our assessment on the scoped Astria Shared Sequencer crates, we discovered 14 findings.
One critical issue was found, 12 were of low impact, and the remaining finding was informational in
nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 62 of 62

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Astria Shared Sequencer
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Prepare proposal must obey the max bytes limit
	Incorrect is_source logic
	The prefix of returned assets is not removed
	Incorrect channel when checking escrow balance
	Out-of-bounds access fetching block by hash
	Duplicate rollup ids
	Duplicate transaction inconsistency
	Transfer of zero amounts is allowed
	Proposal time-out leads to differing chain states
	Mint action can overflow the balance
	Only some IBC requests can fail
	List of assets in bridge init is unbounded
	Duplicate Celestia rollup blob causes panic
	TXs that are too large are rejected without error

	Discussion
	Suggestions for astria-merkle

	Threat Model
	Component: Composer
	Component: Conductor
	Component: Merkle
	Component: Sequencer Relayer
	Component: Sequencer

	Assessment Results
	Disclaimer

