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A/B testing is the established method for testing hypotheses and making data-
driven decisions in product development and business strategy. Classic statistical 
tests are often favored for their simplicity, but they often fall short of delivering 
optimal business results. The added value of A/B testing can be improved 
significantly by adopting sequential tests, particularly Group Sequential Tests.
 
This white paper provides an overview of the history and current applications of 
Group Sequential Tests and explores their benefits in comparison with both fixed-
sample tests and other sequential testing methods. It delves into critical aspects 
such as average stopping time, the trade-offs in statistical power, and issues related 
to generalizability. The advanced estimation procedures required with sequential 
tests are also examined, going over p-values, confidence intervals, and point 
estimates.

The findings illustrate that Group Sequential Tests offer substantial benefits for a 
modest trade-off. They offer significant value to any team seeking to refine their 
approach and maximize the impact of their testing.
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The primary goal of online experimentation, a.k.a. online A/B testing is to make data-
driven decisions by eliciting causal links between tested changes and their effects. 
The secondary goal is obtaining accurate estimates of the size and direction of the 
effects resulting from implementing certain changes.

Achieving these goals with the highest possible added value is the primary 
motivation behind the use of Group Sequential Tests (GSTs). Such experiments 
allow businesses to gain revenue from beneficial changes as soon as possible, while 
on the other hand losing the least amount of revenue due to testing non-beneficial 
changes.

Typically, the largest costs associated with A/B testing are revenue lost due to 
exposing users to non-beneficial changes and failure to capitalize on beneficial ones 
early enough.

A statistical test which minimizes these costs is highly desirable and this motivated 
the development of early sequential tests. These early tests were fully sequential 
tests, with the term derived from the fact that the data is observed continuously, and 
a test can be stopped at any point. However, fully sequential tests make a relatively 
poor trade-off with statistical power and are less able to detect true effects 
with any given number of users and within any given timeframe. On top of that, 
fully sequential tests produce outcomes with notably poorer representativeness 
compared to a fixed-sample equivalent. This means that observed experiment 
outcomes less often translate to real effects afterwards.

Group sequential tests (GSTs) were developed to address these shortcomings of 
early sequential tests. GSTs occupy the middle-ground between fully sequential 
tests and classic fixed-sample tests as they offer a much more favorable trade-off 
between stopping as early as possible and loss of statistical power. Further, they 
provide a much better balance between speed of testing and generalizability of 

1. MOTIVATION

In most A/B tests, the largest costs are in terms of revenue lost while 
exposing users to non-beneficial changes and in failing to capitalize on 
beneficial changes as early as possible.
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With GSTs it is much easier to justify running proper experiments on more and more 
changes since stakeholders know that an experiment will run for just as long as 
necessary, and no longer than that. Once there is the required level of certainty that 
the tested change is either beneficial or at least not harmful, a test stops. Common 
objections to employing experimentation in decision-making are on the grounds 
that it is slow, wasteful, or that it stifles innovation. While these can be shown to be 
misguided in most practical situations [10], employing group sequential tests makes 
the business case for A/B testing even stronger [9].

Group Sequential Tests offer optimal balance between speed and 
generalizability, as well as an optimal trade-off between stopping early and 
the inevitable loss of statistical power.

outcomes. GSTs retain all the usual statistical guarantees on type I and type II errors 
(a.k.a. false positives and false negatives).
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Classic statistical significance tests such as those encountered in basic courses 
on statistics, in many significance calculators and A/B testing software suites, are 
based on a critical assumption of not ‘peeking’ at the data while it gathers. Only a 
single analysis of the data at a prespecified sample size (or time) is allowed, hence 
the name ‘fixed-sample’ tests.

Examining the outcomes at any other point in time makes the statistical test 
inapplicable and its statistical guarantees are nullified. Were such a misuse to 
happen, it is bound to result in a much higher actual risk of a false positive (type I 
error) than what is aimed for, and this has been known for decades [1].

What happens if one just ignores the critical assumption of fixed-sample tests and 
performs regular assessments of the data, making the decision to stop a test each 
time they see a nominally ‘significant’ result? Table 1 shows what one can expect 
from even a small number of ‘peeks’ with intent to stop if the result is significant, 
based on simulations.

Peeking without a statistical model which accounts for it makes significance tests 
lose the very property which defines them: the control of false positive errors. 
As shown, such a misuse of fixed-sample tests results in many times higher 
actual false positive rate than the nominal target rate even with just a few peeks. 
Peeking without accounting for it defeats the very purpose of employing statistical 
significance tests.

Table 1: Peeking (waiting for significance)

2. WHY ARE SEQUENTIAL TESTS NECESSARY?

Inflation of the type I error during unaccounted for peeking with intent to stop

Number of peeks with 
intent to stop

Nominal type I error 
probability

Actual type I error 
probability

Type I error inflation

0 0.05 0.050 -

1 0.05 0.083 1.7x

2 0.05 0.107 2.0x

3 0.05 0.126 2.5x

4 0.05 0.142 2.8x

9 0.05 0.194 3.9x
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Yet, there is significant utility in being able to assess results as data gathers and to 
act on them earlier as opposed to being tied to a single decision point. Intermittent 
data evaluations, when accounted for in the statistical model, allows limiting the 
exposure of users to non-beneficial variants earlier. It also means more rapidly 
deploying changes that increase revenue per user or other key metrics. This is the 
rationale behind the development and widespread adoption of sequential tests in 
multiple areas of both the sciences and in business.

Using fixed-sample tests which model a single data evaluation to evaluate 
data at multiple points in time is a gross misapplication which leads to severe 
violations of all statistical guarantees.
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Group Sequential Tests are a well-researched and established class of statistical 
tests seeing steadily increasing adoption in multiple fields, not least in high profile 
medical trials [2]. The early scientific literature on sequential tests dates to the 
middle of the 20th century where they were first deployed to limit the costs of 
testing military equipment during World War II, whereas the first group sequential 
tests were proposed in the late 1970s for use in clinical trials [15][17]. Yet more recent 
advances such as the introduction of spending functions and the derivation of 
conditionally unbiased estimators occurred in the late 20th century and the early 
2000s [11][12][13][14][16]. Recently group-sequential tests were employed in all of the highly 
scrutinized COVID-19 vaccine trials, among many others [8].

In online A/B testing, Group Sequential Tests were prominently introduced by the 
2017 white paper “Efficient A/B Testing in Conversion Rate Optimization: The AGILE 
Statistical Method” [5]. GSTs were further explored in the 2019 book “Statistical 
Methods in Online A/B Testing” by the same author, including in the context of 
optimal statistical designs.

In their modern form, GSTs allow for experiments with multiple points of evaluation 
of the results while retaining statistical guarantees in terms of type I error (alpha) 
and type II error (beta) rates. Neither the number nor the timing of analyzes need to 
be strictly fixed in advance, even though a rough estimate of those parameters is 
required. The statistical guarantees are achieved by so-called ‘alpha-spending’ and 
‘beta-spending’ boundaries which can be flexibly recalculated if there is a change in 
the number of analyzes performed as well as to fit the exact sample size obtained at 
the point of evaluation.

Aside from specifying an approximate number of analyses, the planning of a typical 
group sequential test is identical to that of a classic fixed-sample test. The analysis 
typically happens at roughly equal time intervals for the benefit of generalizability, 
and at each analysis a test statistic is calculated, and it is determined whether it lies 
within the stopping bounds or if it has crossed one of the boundaries.

3. WHAT IS A GROUP SEQUENTIAL TEST

A group sequential test allows for flexible evaluation of the data at equal 
or unequal intervals until a boundary is crossed, at which point the test is 
terminated.
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If it crosses the upper bound called the efficacy boundary, the test stops as the 
result is statistically significant at the specified significance level. If the statistic 
crosses the lower (futility) boundary instead, the test is stopped with a statistically 
non-significant outcome. It simply means that we do not have enough information 

Figure 1: Decision boundaries in a group sequential test
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to decide either way, but continuing the test is futile in the sense that a statistically 
significant outcome is improbable. Given that there is little chance of seeing the 
result we want from the test, it is best to stop early and stop exposing users to what 
are possibly money-losing experiences.

Since the test can stop at any of the evaluation points, there is no predefined sample 
size, just a maximum sample size which, if reached, will force the termination of the 
test one way or another. This latter property is very useful when deadlines dictated 
by external considerations force a time limit on a decision, as is frequently the case.
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To understand how sequential testing is possible, it is worth having a look at what 
happens when using classic fixed-sample tests but there are ‘peeks’ at the results 
and the test is stopped if the outcome is nominally significant. Twelve equally 
spaced analyses would be performed as the data is gathered. The textbook alpha 
level of 0.05 (5% false positive rate) is used for simplicity and all simulations are 
performed with a true difference between the control and the variant of zero 
(simulating an A/A test). Figure 2 shows the outcomes of 10,000 simulated tests 
performed as described above.

The results show that the entire alpha is spent on the first analysis. The fixed-
sample test works as expected and results in a false positive in roughly 5% of 
the simulated A/A tests. These tests are terminated with a statistically significant 
outcome at the first evaluation point. The remaining tests are evaluated at the 
following analyses and some of them are bound to result in statistically significant 
outcomes with the proportion being lower than 5% since some of the most extreme 
outcomes have already terminated earlier. What is obvious is that for any analysis 
after the first, the actual error rate is above the desired nominal rate.

A simple idea to maintain the desired nominal rate with multiple evaluations is to 

4. HOW GROUP SEQUENTIAL TESTS WORK

Figure 2: Peeking without accounting for it in the statistical model
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pre-specify the number of analyses to be conducted and to use a stricter threshold 
for each analysis. With a maximum of twelve planned analyses and a target of 0.05 
overall alpha such a threshold would correspond to using an alpha of 0.0107 at each 
analysis.

While the above solution solves the statistical problem, it also makes it equally likely 
to observe a statistically significant outcome very early with 1/12 of the maximum 
sample size, or quite late, say with 11/12 of the maximum sample size. However, in 
terms of generalizability these two tests have quite different interpretations. A 
larger sample size is much more desirable as it alleviates many of the threats to 
external validity, so this is an area of possible improvement over the initial idea.
It is preferable to make it harder to stop too early to make sure that only the most 
extreme outcomes would trigger an early stop. This can be achieved by ‘spending’ 
alpha in an incremental manner depending on the timing of the analysis. To this end, 
alpha-spending functions of various shapes have been developed.

ABsmartly follows the AGILE sequential testing method and has adopted bounds 
based on the Kim-DeMets power functions for both alpha and beta spending. These 
functions are very strict early on and more permissive on later analyses as shown on 
Figure 3.
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Figure 3: O’Brien-Fleming-like error spending function (orange) vs Kim-DeMets error 
spending function (blue) with upper boundary of 3.

It can be observed that with these functions less than 20% of the total type I 
error probability is spent in the first half of the maximum planned duration of the 
experiment. The remaining 80% is spent after more than half of the users have been 
observed. This is what is meant by conservative.

Overlaying the alpha spent on each stage over the number of tests stopped under 
the peeking simulation can provide an insight into how it works.
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The minimal spending in early stages does not allow the termination of a vast 
majority of tests which would have otherwise stopped early. At later stages the 
error rate grows until it reaches about 0.015 at the final stage. This allows a higher 
proportion of tests to be declared significant at those later analyses.
The resulting distribution of the number of tests stopped at each analysis is shown 
on Figure 5.

Figure 4: Using Kim-DeMets bounds versus peeking
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With 10,000 tests none have stopped at analyses #1 and #2, and just three have been 
declared significant at analysis #3. Most of the stops are concentrated between 
analyses 7 through 12. The sample sizes associated with these stages mean the 
generalizability of the results is much closer to that of an equivalent fixed-sample 
test. It should be noted that the distribution of stopping times looks different 
depending on the size and direction of the true difference between the control 
and the variant. For most of the possible true values the distribution shifts towards 
stopping earlier than shown, increasing the efficiency gained in those scenarios [6].

Figure 5: Number of tests stopped at each analysis (out of 10,000 A/A tests).
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The main benefit of group sequential tests over fixed-sample tests consists of 
the lower average sample sizes achieved across all possible true values of the 
parameter of interest. As explained previously, this translates directly to increased 
overall revenue due to a combination of fewer losses from running tests as well as 
starting to benefit from winners earlier. That is a major reason why ABsmartly now 
offers group sequential tests as the default choice for users.

There are straightforward calculations based on exit probabilities at each stage, 
which allow the calculation of the average sample size a group sequential test 
would achieve for any given true effect size. It can then be compared to that of an 
equivalent fixed-sample test. Equivalent here means a test with the same target 
error rates in terms of false positives and false negatives (type I and type II errors). 
The analytical results have been confirmed by countless simulations.

Examining a typical scenario with a group sequential test with four planned 
analyses in total reveals at least 15% lower average sample size, while in a near-best 
case a GST can achieve 70% or lower average sample size, compared to its fixed-
sample equivalent. The best-case scenario is when the true value of the parameter is 
significantly higher or lower than the target minimum effect of interest. The worst-
case scenario is when the true effect size is a bit lower than the target minimum 
effect of interest. The average sample size as a percentage of a fixed-sample 
equivalent across a range of possible true differences is shown on Figure 6.

5. GSTS VERSUS CLASSIC TESTS

5.1 LOWER AVERAGE SAMPLE SIZE
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The x-axis shows different possible true relative differences between the tested 
variants. The y-axis shows the percentage of the fixed-sample equivalent a GST with 
four analyses would stop at, on average.

Increasing the number of analyses from four to eight results in at least 28% lower 
average sample size whereas in the most favorable cases the average sample size 
is lower by more than 80% of the fixed-sample equivalent. Figure 7 portrays the 
average sample sizes in this scenario.

Figure 6: Average sample size of a GST with 4 analyses as percentage of the sample size of 
an equivalent fixed-sample test
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Figure 7: Average sample size of a GST with 8 analyses as percentage of the sample size of 
an equivalent fixed-sample test

Again, the x-axis shows different possible true relative differences between the 
tested variants. The y-axis shows the percentage of the fixed-sample equivalent a 
GST with eight analyses would stop at, on average.

Fixed-sample tests have long been proven to be universally most powerful for their 
design parameters, so a sequential test of any kind is bound to sacrifice some power 
to gain the impressive reductions in average sample size shown above. As a result, 
a GST is always slightly less powerful than a fixed-sample test of the same sample 
size.

As a result of this in certain instances it may take longer to complete a GST than 
a fixed-sample test with equivalent type I and type II error guarantees. These 
occurrences are not too uncommon as shown with simulations and real-world data 

5.2 REDUCED STATISTICAL POWER
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in the following section. However, this does not invalidate the better-on-average 
performance of group sequential tests.

The overall trade-offs are well worth it due to the gained efficiency by both 
implementing winners and cutting losers 20-80% earlier on average, compared to 
what would happen if fixed-sample tests were used instead.

The following simulation results are for a GST with twelve planned analyses. 10,000 
simulation runs were performed for each true value of the difference between 
control and variant.

First, the simulations allow us to examine the type I error guarantees as shown 
in Table 2. Since the null hypothesis is a composite one of no or negative effect, 
several values are examined under null hypothesis. As expected, the type I error 
guarantee is fully met under the worst-case scenario of the true difference between 
control and variant being exactly zero. For other cases the observed type I error rate 
sharply drops to near zero as can be expected from the test’s power curve.

5.3 SIMULATION RESULTS

True Variant A Lift Maximum Allowed Type I 
Error by Design

Observed Type I Error Rate

-15% (1·δ) 5% 0.00%

-7.5% (-0.5·δ) 5% 0.05%

0% (0·δ) 5% 4.53%

Table 2: Type I error control under various true effects
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Table 3 shows that Type II guarantees are also well met. In the case where the 
true effect is exactly equal to the target minimum detectable effect (MDE, a.k.a. 
minimum effect of interest), the target of 10% is met (the .26% overshoot is well 
within the simulation error).

True Difference Maximum Allowed Type II 
Error by Design

Observed Type II Error Rate

7.5% (0.5·δ) N/A 56.82%

15% (1·δ) 10% 10.26%

22.5% (1.5·δ) 10% 0.46%

30% (2·δ) 10% 0.00%

Table 3: Type II error control under various true effects

True Difference Maximum Allowed Type II 
Error by Design

Observed Type II Error Rate

-15% (-1·δ) 2.87 0.00%

-7.5% (-0.5·δ) 3.99 0.18%

0% (0·δ) 6.22 6.99%

7.5% (0.5·δ) 8.26 23.14%

15% (1·δ) 7.27 11.37%

22.5% (1.5·δ) 5.23 0.84%

30% (2·δ) 3.84 0.01%

Table 4: Average stopping stage and percentage of tests stopped with a sample size larger than 
the equivalent fixed-sample test

As expected, the type II error increases significantly for values lower than the 
minimum effect of interest. It drops sharply following the power curve for values 
much larger than the target MDE.

The biggest reason for running group sequential tests is their lower expected 
running time. Table 4 shows how the GST performed in terms of average stopping 
stage for the various true relative differences examined in the simulations.
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The simulations also show when one could expect to see a GST take longer than 
a fixed sample size test, in some cases, and what those proportions are under 
different conditions.

The analytically obtained average sample size graphs have also been confirmed 
through these simulations. In Table 5 the expected outcomes are in the “Expected 
Sample Size” column whereas the simulation results are in the “Observed Sample 
Size” column. The differences between expected and observed are mostly small, 
with discrepancies in both directions at the extreme ends, which would mostly 
cancel each other out if real differences are equally likely to be extremely low or 
extremely high.

True Difference Expected Sample 
Size (% of Fixed 

Sample Test)

Observed Sample 
Size (% of Fixed 

Sample Test)

% Difference

-15% (-1·δ) 28.37% 27.63% -2.61%

-7.5% (-0.5·δ) 39.49% 38.45% -2.63%

0% (0·δ) 59.46% 59.94% 0.80%

7.5% (0.5·δ) 79.49% 79.56% 0.08%

15% (1·δ) 70.11% 70.04% -0.01%

22.5% (1.5·δ) 49.32% 50.43% 2.25%

30% (2·δ) 35.87% 36.95% 3.01%

Table 5: Expected sample size under different true effects: theoretical versus empirical 
performance

The simulations show group sequential tests behave as advertised: they achieve 
their target false positive and false negative rates, and the observed savings 
realized due to stopping earlier than equivalent fixed-sample size tests match the 
expected ones.

There are few meta-analytical examinations of the performance of Group Sequential 
Tests, especially in the field of online A/B testing. One such analysis based on real-
world data from 1001 A/B tests shows that group sequential tests were terminated 
on average with nearly 30% fewer samples than if they had been analyzed using 

5.4 REAL-WORLD PERFORMANCE
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equivalent fixed-sample tests [7].

This is a significant improvement as it means losing 30% less revenue on average 
for tests where the tested variant is hurting revenue, as well as gaining nearly 43% 
more revenue during the period which would have been spent testing with a fixed-
sample approach.

Additionally, in this real-world dataset GSTs required a slightly larger sample size in 
about 20% of A/B tests. While this constitutes a noticeable proportion of all sampled 
tests, the number should be viewed in light of the fact that this occurrence is most 
likely when the minimum effect of interest (MEI, MDE) is larger than the actual. As a 
result, the mileage experienced by a practitioner or organization will vary depending 
on the sample sizes available and the MEIs chosen, as well as how often the actual 
effect size ends up being under the specified MEI.

Overall, the real-world data confirms what was expected from analytical 
calculations of average sample size and expected termination stages. The dataset 
demonstrates that AGILE GSTs can offer a very compelling trade-off between a 
lower average sample size and the expected loss of statistical power.

GSTs save around 30% of the sample size / time on average, compared to 
equivalent fixed-sample tests with minimal loss of power and while retaining 
all the usual statistical guarantees.
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As mentioned in part 1, Motivation, group sequential tests occupy a middle-ground 
between fully sequential tests and classic fixed-sample tests. Fully sequential 
tests prioritize early stopping above everything else. This comes at the cost of loss 
of statistical power and poorer generalizability of the outcomes. GSTs on the other 
hand aim for a more balanced trade-off.

GSTs and particularly those conducted following the AGILE sequential testing 
method apply alpha-spending and beta-spending functions, both of which are 
conservative early on. This means that the termination of an experiment in the 
very first analyses is much less probable compared to termination at later stages 
in the case of a zero-valued or a small true effect. AGILE GSTs tilt toward higher 
probability of termination in early stages only in the case of larger positive or 
negative true effects.

The above amounts to a trade-off between stopping early and obtaining a large 
enough sample to counter common threats to generalizability. The larger the 
true effect size is, the more likely it is for a GST to stop early to either cut losses 
or to benefit from increased revenue at the cost of more possible issues related 
to generalizability. For less extreme true effects an AGILE group sequential 
test is more likely to terminate at later stages and therefore obtain better 
representativeness as it is less costly to do so. Note that the trade-off is based on 
the true effect size and not the observed one, even though there is a connection 
between the two.

In contrast, fully sequential tests typically lack any consideration for the 
generalizability of the outcome and treat early and late terminations alike. In other 
words, a test with 100 users is viewed as having the same external validity as a test 
with 1,000 users and a test with 100,000 users. This works well when the process 
under scrutiny is governed by the laws of physics which are immutable and constant 

6. COMPARISON WITH OTHER SEQUENTIAL TESTS

6.1 GENERALIZABILITY

Unlike fully sequential tests, group sequential tests are designed with 
generalizability in mind.
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Group sequential tests in general and AGILE GSTs in particular, make a significantly 
more favorable trade-off with statistical power compared to that made by fully 
sequential tests. A recent simulation study compared the performance of two types 
of fully sequential tests with that of an AGILE GST on a set of common and typical 
parameters. The first fully sequential test is SPRT, the Sequential Probability Ratio 
Test. It is the precursor of most modern sequential tests. The second is the widely 
popularized test known as Always-Valid P-Values or Always-Valid Inference, which 
is based on an mSPRT (short for mixture SPRT), a type of SPRT which employs a 
mixture distribution. This second test has seen adoption by some prominent A/B 
testing software vendors.

The comparison, available at https://blog.analytics-toolkit.com/2022/comparison-
of-the-statistical-power-of-sequential-tests/, shows the GST achieving a better 
trade-off between stopping early and the relative loss of statistical power than both 
of the other two tests, with Always Valid P-Values exhibiting the worst performance. 
The results showed that SPRT has an expected sample size 37% less than that of 
a fixed sample test at the cost of a 61% increase in its type II error. Always valid 
inference did much worse by exchanging a 26% reduction in average sample size 
for a staggering 123% higher type II error rate. The AGILE GST achieved a 28% 
reduction in average sample size at the cost of an 18.5% increase in the type II error 
rate.

Viewing this loss of power in terms of sample size requirements:
• the group sequential test required a 9.7% larger maximum sample size to 

achieve the same power as an equivalent fixed-sample design;
• SPRT required an increase in its maximum sample size of 22%;
• Always valid inference needed a nearly 85% larger maximum sample size to 

achieve the same power.

While the reduction in average sample size of the GST is slightly better than that of 
Always valid inference, and significantly worse than that of SPRT, the much lower 
loss of statistical power is what makes the group sequential test fare so much 
better overall. The resulting trade-off is visibly better when compared to both fully 
sequential tests.

6.2 STATISTICAL POWER

in nature, but the same cannot be said about human behavior. The latter is known 
to be prone to seasonality, day-of-week and time-of-day effects, learning effects, 
novelty effects, population change, and others.

https://blog.analytics-toolkit.com/2022/comparison-of-the-statistical-power-of-sequential-tests/
https://blog.analytics-toolkit.com/2022/comparison-of-the-statistical-power-of-sequential-tests/
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The trade-off is best illustrated as a graph with average sample size reduction on 
the x-axis and relative increase in the type II error rate on the y-axis. The closer a 
test is to the x-axis, the better it is as it means it has a lower increase in type II error. 
The further it is to the right, the better, as it means it achieves a greater reduction in 
average sample size compared to a fixed-sample size test of the same size.

Group sequential tests trade off reduced power for early stopping way more 
efficiently than either of their fully sequential cousins.

Figure 8: Trade-off between early stopping and increase in the type II error rate (loss of 
statistical power) for different sequential methods.
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However, Figure 8 does not accurately portray the disparity between the tests. The 
y-axis is notably compressed compared to the x-axis in order to fit all three methods 
on the screen. Putting both axes on the same scale, the graph looks like Figure 9.
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Figure 9: Trade-off between early stopping and increase in the type II error rate (loss 
of statistical power) for different sequential methods, in proper scale.

Average Sample Size Reduction

In
cr

ea
se

 in
 th

e 
Ty

pe
 II

 e
rr

or
 ra

te

AGILE

SPRT

AVPV

Fixed Sample

0%

20%

40%

60%

80%

100%

120%

140%

The Sequential Trade-off: Beta vs Average sample size
The Sequential Trade-off: Beta vs Average sample size



26www.absmartly.com

Notably, the performance of Always valid inference is now literally off-the-chart 
worse than that of the other methods, being multiple times worse than even the 
classic SPRT which is far into the upper right corner in Figure 9.

6.3 MORE ACCURATE ESTIMATION

Overall, group sequential tests should result in point estimates with lower bias 
and variance compared to fully sequential tests, as well as in narrower confidence 
bounds.

Additionally, AGILE GSTs are more conservative about stopping early. This has 
benefits beyond the improved generalizability discussed earlier. Treating early and 
late stops differently means that upon termination a GST would have more data 
gathered, on average, in the case of a less impressive true effect size. It would 
result in more accurate point estimates and interval estimates since stopping later 
leads to lower mean squared error (MSE) for the point estimates as well as narrower 
confidence intervals.

In the case of a larger true effect size a GST will stop earlier than otherwise, on 
average, which results in relatively less accurate estimates. This trade-off factors 
in the significant cost of obtaining a more accurate estimate of extremely good (or 
bad) true effects so less accurate estimates are accepted in exchange for improving 
the overall return from testing.

A group sequential test offers significantly better generalizability as well as 
a much better trade-off between average sample size and power and more 
accurate estimation, when compared to popular fully sequential tests.
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7. ESTIMATION FOLLOWING A GST

Estimation may be of secondary importance compared to decision-making, but it 
is still important to have good estimates for things like projecting the effects of a 
particular change, giving credit to the individuals and teams which participated in 
the development of a particular tested intervention, for meta-analytical purposes, 
and so on.

Calculating p-values and obtaining optimal estimators such as a maximum likelihood 
estimate and a confidence interval is fairly straightforward with fixed-sample tests 
since there is just a single random variable to account for. Doing the same with a 
sequential test is a fair bit more involved as the stopping time becomes a second 
random variable which contains information about the true effect size. Using naïve 
estimates which do not adjust for the stopping time is bound to introduce significant 
unconditional bias (averaged across all possible stopping stages), as well as bias 
conditional on the stopping stage.

As an example, in a fixed sample test of difference in means the observed effect 
size is also the maximum likelihood estimate (MLE). However, the observed effect 
size is severely biased when optional stopping is introduced. Figures 10 and 11 show 
an example of the absolute and relative bias of the observed effect size versus the 
true effect size in a group sequential test (obtained from 10,000 simulations).
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Figure 10 Average absolute bias conditional on the stopping stage

Figure 11 Average relative bias conditional on the stopping stage

Average Absolute Bias
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Confidence intervals likewise lose their coverage probability guarantees when 
applied naively to a sequential test. P-value calculations also require special ap-
proaches to account for the optional stopping and achieve a uniform distribution 
under the null. This section will briefly cover estimation following a GST.

7.1 P-VALUE CALCULATIONS

7.2 CONFIDENCE INTERVALS

The p-value is the probability of observing an outcome as extreme or more extreme 
than the one observed assuming the null hypothesis is true. Under sequential 
sampling, the p-value cannot be obtained from the cumulative distribution function 
of the calculated Z score. An established method for calculating p-values from 
sequential tests involves a stage-wise ordering of the sample space as described 
in Tsiatis, Rosner, and Mehta [18]. It results in a p-value calculation which uses both 
the stopping time and the value of the observed test statistic at the stopping stage. 
As such, the method is applicable only after the trial has stopped due to a crossed 
boundary.

The p-value is calculated as the sum of exit probabilities in a stage-wise ordering 
of the Z scores for the boundaries, as well as the probability of the statistic being 
more extreme than the observed score at the stopping stage. A stage-wise p-value 
is therefore simply the combined probability of stopping earlier than the stopping 
stage and the probability of stopping at that exact stage with a Z score greater than 
or equal to the observed statistic.

Unlike other attempts at p-value calculations following a group sequential test, the 
stage-wise approach has the benefit of maintaining the flexibility of not having a 
fixed number of interim analyses or analyses times. It also does not depend on the 
information levels and group sizes beyond the stopping stage.

The challenge in GSTs is to obtain confidence intervals with exact coverage 
probabilities both in the conditional case of stopping at a specific stage, as well 
as marginally across all stopping stages. Obviously, achieving the former also 
guarantees the latter, but the reverse is not true and numerical studies have shown 
that obtaining a marginally unbiased confidence interval does little about improving 
conditional coverage probabilities.

Additionally, intervals with minimal width as well as intervals which match well 
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with the decision procedure and calculated p-values are highly desirable for their 
informativeness and to minimize the conflict between estimation and inference. 
For example, Exact Conditional Confidence Intervals (ECCI) often have very wide 
bounds, in some cases spanning from plus to minus infinity. Obviously, such 
intervals have little utility in those instances, even though they offer exact coverage 
probabilities.

The solution developed by Fan & DeMets (2006) [3] is a two-step Restricted 
Conditional Confidence Interval (RCCI). RCCI uses a cross-section between ECCI 
and a custom interval based on just the stopping stage to narrow down the interval 
bounds while retaining coverage probabilities at any particular stopping stage near 
the nominal one (e.g. 95%). RCCI is as close to a conditionally unbiased confidence 
interval calculation procedure as possible while offering appealingly narrow 
intervals, and so it is the recommended solution for most GSTs. It is the interval 
implemented in ABsmartly’s sequential testing engine.

7.3 POINT ESTIMATION

It has already been shown in the beginning of this part that naïve point estimates 
overestimate the true effect size when a GST stops early, and it underestimates it 
when stopping at later stages. Various methods for constructing unconditionally 
unbiased estimators as well as conditionally unbiased estimators have been 
proposed without a clear superiority for any one of them, as neither has been 
identified as a uniformly minimum-variance unbiased estimator (UMVUE).

A detailed examination of previously proposed methods by Fan, DeMets & Lan 
(2004) [4] has found three of them, namely the Maximum Conditional Likelihood 
Estimate (MCLE), the Conditional Moment Estimate, and the Conditional Bias 
Reduction Estimate to be identical. All of them make use of the exit probability at 
the stopping stage, as well as the exact value of the statistic at the final stage.

The same authors propose two variants of a modified MCLE, one of which has low 
marginal bias, but higher conditional bias while boasting the lowest variance and 
mean squared error (MSE) of all previously proposed point estimation procedures. 
In the same study the MCLE is shown to have the lowest conditional and marginal 
bias at the cost of somewhat higher variance and MSE (and the highest of all 
other methods). The bias-variance trade-off made is ultimately dictated by the 
circumstances.
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In this author’s view, the recommended approach for most GSTs should be the one 
with the lowest conditional and marginal bias and so the Maximum Conditional 
Likelihood Estimator (MCLE) is the preferred approach to estimation in the 
ABsmartly group sequential testing software.
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8. SUMMARY

Group sequential tests (GSTs) have been shown to possess several highly desirable 
qualities. First, they allow for results to be evaluated on a somewhat-flexible 
schedule without any compromise with typical statistical guarantees in terms of 
type I and type II errors, a.k.a. the rate of false positives and false negatives.

Second, group sequential tests achieve anywhere from 20% to 80% reduction 
in sample size compared to equivalent fixed-sample tests, with some real-world 
results showing a nearly 30% lower sample size, on average. GSTs stop earlier than 
their fixed-sample counterparts for all possible true values of the parameter being 
estimated, but this is especially true if the true difference is significantly greater 
or lesser than the target minimum effect of interest. This ability to reduce user 
exposure to experiments translates directly into money saved or money earned, 
depending on whether a test is stopped earlier due to negative outcomes or due to 
highly positive ones.

Third, GSTs designed following the AGILE sequential method utilize spending 
functions which are conservative early on and achieve excellent generalizability of 
the obtained results. Such tests balance between the ability to stop much earlier 
than fixed-sample tests and obtaining results which would hold well outside of the 
duration of the A/B test.

Finally, GSTs are shown to make more favorable trade-offs between stopping early 
and the inevitable loss of statistical power when compared to other sequential 
tests. This also results in more accurate estimates following an experiment, as well 
better external validity of the outcomes. In particular, the white paper examined a 
comparison between AGILE GSTs and two fully sequential tests: the SPRT and the 
mSPRT, also known as Always Valid Inference and has shown the above to be the 
case.
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