
1

Making Energy
Modeling Faster
A machine learning based approach to emulate
physics based simulation for energy
consumption prediction
June 2024
Junghwan Park, PhD, Jeff Friesen, Emi Lee

2

Executive Summary
The usage of energy modeling software and research has in large provided practical

applications and stakeholder support across multiple industries from policy making to

contracting with models such as National Renewable Energy Laboratory’s (“NREL”)
EnergyPlus. NREL’s EnergyPlus modeling engine enables users to utilize this open

source technology for multiple use cases such as building and retrofit design, code

compliance, green building certifications, informing users of qualifications for tax and

utility incentives, and helping produce large-scale analysis to assist in policy decisions

among other things1. Now, with the advancement of computational systems, technology

companies such as Radiant Labs are able to utilize the core physics-based algorithms

of EnergyPlus to predict energy consumption and upgrade options for larger areas

ranging from neighborhoods to entire states through their physics-based engine

(“PBE”).

More specifically, the PBE is able to take algorithmically derived insights from

EnergyPlus and, in tandem with their own algorithms, produce customer targeting and

analytics dashboards, lead tracking and consumer energy roadmaps, hourly energy

modeling, grid impact reports, as well as perform market factor analysis. Similar to other

state-of-the-art engines, the PBE takes a physics-based approach using EnergyPlus to

optimize for accuracy by accounting for weather and seasonal changes, HVAC

properties, heat transfer, and more. However, while accurate, the PBE, like many

physics-based models, is largely computationally intensive which can result in longer

calculation times. Moreover, the equipment required to run PBE may be cost prohibitive

for many users.

The machine learning based methodology developed by the Agile Electrification (“AE”)
Project 1 team emulates the energy prediction capabilities of PBE while addressing the

challenges previously identified by inferring results faster and improving scalability

https://paperpile.com/c/Vfx5a3/CdUo
https://radiantlabs.co/

3

through use cases such as web-based applications and single home computing. This

approach has demonstrated that by accounting for building characteristics, weather, and

time parameters it is possible to emulate physics-based modeling engines while

significantly increasing output speed several-fold and preserving accuracy. Through

using machine learning algorithms such as multilayer perceptions, this approach

presents promising improvements to current methods for investigating future model

emulation cases.

This whitepaper introduces the protocols developed by AE Project 1, starting from

preprocessing the building characteristic data to model experimentation, testing and

evaluation, final model implementation, and finally, a single home use case. Additionally

this paper also provides open source code for the AE’s PBE-trained emulator model

and an example of an interactive, web-based sensitivity analysis use case showcasing

the implementability and accessibility of a model created under this established method.

Notably, all models developed based on our protocols heavily depend on the regionality

of the dataset which includes variables such as climate, building characteristics (e.g.,

materials and structural footprint), and occupancy schedule. Moreover, the training data

was collected from New York and northern California and thus, locality in the dataset

may impact the model’s generalizability in regions outside of those in the training

dataset and must be accounted for when training and implementing the open-source

code in other regions. However despite this the protocol may remain valid at large.

4

Introduction
From large organizations to independent contractors and consumers, informed

decision-making is critical when evaluating choices related to energy consumption and

upgrade scenarios with current industry practices often involving physics-based

modeling engines, such as EnergyPlus, to produce these estimations. By accounting for

factors such as weather and building characteristics, through direct calculations in

accordance with physical properties, these engines can produce estimates across

various industry use cases.

The physics based engine (“PBE”) developed by Radiant Labs takes this a step further
by utilizing the core of NREL’s EnergyPlus engine alongside their algorithms to produce

customer targeting and analytics dashboards, lead tracking and consumer energy

roadmaps, hourly energy modeling, grid impact reports, as well as perform market

factor analysis, with a large portion of its analytical power deriving from its capacity to

model hourly energy consumption. Using technologies such as the PBE, users can

receive state-of-the-art estimations to guide their decision-making and create robust

mental models of their energy consumption.

While providing one of the most accurate options, the current state of the PBE, and

physics-based modeling engines at large, face the challenge of accessibility. In this

context, accessibility refers not only to the physical availability of computing resources

but also to the awareness and willingness of individual users, such as consumers or

independent contractors, to engage with the technology. Many lack the necessary

infrastructure or the motivation to seek out and implement these advanced systems,

creating a significant barrier to entry.

5

In upholding Agile Electrification's (“AE”) overarching mission to harness cutting-edge
technologies to enhance industry practices, AE Project 1 targets this pain point by

proposing a new machine learning-based methodology to estimate hourly, daily, weekly,

and annual energy consumption while aiming to increase computation speed while

preserving accuracy.

To achieve this, the PBE will be emulated by the machine learning algorithms trained on

building characteristics, weather properties, and time inputs to predict energy, natural

gas, fuel oil, propane, wood cord, wood pellet, coal and total MMBTU1 consumption

provided by Radiant Labs.

Given the diversity of potential training datasets to which this model can be applied,

developing a protocol to optimize the machine learning models serves to be worthwhile

rather than just focusing on a single materialized model set; And thus, AE Project 1

aims to establish a protocol to build models for energy calibration emulation. In creating

an open-source model and establishing a protocol, this project not only supports AE’s

wider initiative by widening the accessibility of such technologies but also opens the

door for future iterations of similar emulation scenarios and improvements. With this in

mind, this paper will detail the methodology behind emulating a physics-based engine

using machine learning and its results from data preprocessing to final implementation

and wider use cases.

1 A unit of energy measurement. BTU=British Thermal Unit, MMBTU=million BTU.

6

Methods

To approach emulating the PBE, the process was largely divided into two parts: data

conversion/preprocessing and model design. This was in part due to the novel nature of

this experiment as a whole as utility data is typically stored in a format focusing on

human interpretability, resulting in representations that are not fully compatible with

numeric models. Moreover, the recorded information must be standardized across all

houses, further adding to challenges regarding nonlinearity and dimensionality, both of

which are detailed in this section.

Data Conversion and Preprocessing

Overview

The dataset used for the model were sourced from the Radiant Labs' database,

consisting of 1) anonymized building characteristics data of the houses in New York and

California, 2) local weather station data, and 3) the hourly predicted energy use

estimates using NREL’s OpenStudio. Weather and hourly predicted energy use data

were also accompanied with time information with the following data preparation

protocols in the following section detailing this process in full.

Building Characteristics Data

A comprehensive dataset of 1.05 million houses was provided, encompassing every

architectural detail potentially relevant to energy usage estimation. For example, this

included wall thickness and azimuth, window size and material, light transmittance,

number and type of appliances, energy efficiency of appliances and the type of energy

they use, year built, lot size, floor area, building foundation materials and dimensions,

whether each room is connected to air conditioning or heating, square footage of each

7

room, connections between rooms, age, fuel, size, and energy efficiency rating of the

heating and air conditioning system (“HVAC”). For the practical convenience of the
training process, we randomly sampled 100,000 houses. Notably, this dataset may

include imputed building characteristics by regional socio-demographic distribution

using another RL’s product. However, regardless of whether the data was actually

measured or imputed, they were entered into OpenStudio to synthesize the prediction

results, and due to the primary object being to emulate the PBE, information source was

not taken into account.

JSON-HPXML Conversion and Preprocessing for ML Training

The building characteristics were maintained in the industry-standard format: JSON-ified

HPXML. Home Performance XML (“HPXML”) 2,3 is an XML-based building

characteristics scheme developed by the Building Performance Institute in targeting a

broad range of applications from auditing to retrofit simulation. For the ease of parsing,

storing, and rendering, JSONified HPXML has been used in Radiant Labs as a lossless

way to store information such as building characteristics.

This JSON-ified HPXML, while providing a robust representation of residential building

details, inherently needs to be converted into numeric vectors which can be entered into

numerical models including machine learning algorithms. A JSON-ified HPXML flattener

was developed to streamline the process of converting JSON-ified HPXML files into a

structured numerical array for training.

Key objectives and functionalities of this flattener include:

● Flexible Design with Dynamic Output: Takes JSON-ified HPXML and
customize it to 1*N numerical vectors factoring in both the design file's variability

and the exclusion of specific HPXML elements, enabling integration with a

separate design file.

● Standardized Data Representation: Introduces a mechanism within the tool to

cater to the variance posed by multiple instances of in-house entities in

https://paperpile.com/c/Vfx5a3/fDV1+uOYG

8

JSON-ified HPXML. This would involve predetermining a maximum for each

entity type to ensure consistent data structure for numerical processing.

● Efficient Conversion & Future Compatibility: Transforms JSON-ified HPXML
files into a structured 1xN numerical vector suitable for numerical tools and

algorithms accounting for future scalability

● Easy-to-Use in Python Code: Ensures the tool's design is intuitive, especially
for Python developers. Such that even those with a basic grasp of Python should

find the tool easy to navigate and operate.

To do this, the HPXML JSON Flattener operates through a two-step algorithm:

1. Step 1: Transforming JSON to Ordered Tuples
Objective: To systematically organize HPXML JSON data into a sequenced

collection of tuples, each representing a key-value pair from the original dataset.

This structure ensures data consistency and prepares it for further conversion.

Procedure:
1. Initialization: Start by loading the HPXML JSON design and creating an

empty list intended for tuple storage.

2. Data Processing: Iterate through the design's predefined mapping order,
capturing each data point (key and its associated value) for

transformation.

3. Key Management: Address unique and special keys by considering
enumerated variables and default values, ensuring that all data points are

accurately represented. Keys are used to order the key-value pairs in step

4.

4. Tuple Conversion: Convert the processed data points into tuples and
organize them into an ordered list, maintaining a consistent sequence of

information.

2. Step 2: Converting Tuples to a Numerical Vector
Objective: To translate the ordered tuples into a numerical vector, employing a
binary (one-hot encoded) representation for each tuple, thereby facilitating a

9

consistent and computable data format.

Procedure:
1. Vector Initialization: Start with an empty vector designed to hold the

numerical representation of the data.

2. Binary Conversion: Transform each tuple into its binary representation,

reflecting its unique position and value within the dataset. All possible

values given by HPXML specification were used to encode. (See

Appendix 1).

3. Array Compilation: Merge these binary representations into a
comprehensive numerical array, ensuring a unified format ready for

analysis.

By converting HPXML JSON data through these structured steps, the HPXML JSON

Flattener tool achieves a standardized and numerically consistent format, suitable for

training with numerical models.

Feature Selection

This newly converted dataset consists of a total of 7,697 variables describing the

building characteristics of the house(s). Due to the similarities of the houses, there

exists an inherent abundance of zeros of one-hot-encoded vectors and highly unlikely

characteristics (e.g., coal-fueled appliances) leaving the majority of the input features

consistently valued as 0 or other constant values. To remove recurring constant input

features, a variance test was performed to only select variables with a variance above

an arbitrary threshold, ensuring that the selected variables hold enough variance to

possess significant predictive value.

Thus, to preserve as many building characteristic combinations as possible, 0 was

selected as the threshold reducing the total number of features from 7,697 to 295

features with non-zero variances. (See appendix 2 for the list of the final input features)

10

Weather Data

RL’s dataset contains the local weather stations. It has 6 dimensions:

1. Temperature measured by a dry bulb thermometer,

2. Temperature measured by a wet bulb thermometer,

3. Relative humidity,

4. Wind speed,

5. Direct solar radiation, and

6. Diffuse solar radiation.

Each weather data point is recorded on an hourly time scale. When building models at

other time scales (e.g., annual), weather information was aggregated to the required

time interval using the minimum, maximum, mean, and variance.

Hourly Predicted Energy Use Data

RL conducted a series of simulations to calculate hourly energy use using OpenStudio.

The output contains a large amount of data ranging from indoor airflow, conditioned

temperature, temperature of each space, ventilation air speed per type, heating load,

cooling load, and energy use per energy type. We only focused on 1) total energy use

(million BTU), and 2) electricity use (kWh). Energy use was measured at an hourly

frequency and when building models at other time scales, energy use information was

simply summed to the required time interval.

Final Input Parameters

Post conversion and feature reduction, since we are targeting emulation at various time

intervals (i.e., year, month, week, day, hour), inputs were aggregated accordingly.

Building characteristic feature columns remained the same, but weather and prediction

results were aggregated as described above.

11

The final the cleaned dataset consists the following features:

Variable Category Type Description

Time Predictor Time variables regardless of dataset
interval measured in units of

● hour of the year
● hour of the day
● day of month
● day of year

Weather Predictor Weather variables in TMY3 format
measuring:

● Drybulb temperature
● Wetbulb temperature
● Relative Humidity
● Diffused solar radiation
● Direct solar radiation

Building Characteristics Predictor Variables measuring building
characteristics such as:

● Square footage, orientation, floors
and foundations

● HVAC characteristics
● Household appliances and fuel

type

For the full list, see Appendix 2.

Natural Gas Consumption Target Variable measuring total gas consumption
in Therm

Total Electricity
Consumption

Target Variable measuring total electricity
consumption in kWh

Total MMBTU Consumption Target Variable measuring total electricity
consumption in MMBTUs

Figure 1: Breakdown of variable categories used in the training and testing datasets

12

Model Development

Model Candidates

For model candidate selection, to maximize the speed while retaining accuracy, the

nature of the dataset (heavily skewed with high dimensionality) was largely considered

when selecting models, with criteria rooted in the models ability to handle non linearity

and high dimensional data, inference and training speed, as well as past proven

success in similar modeling scenarios. Through literature review and examining industry

use cases, the preliminary white and black box model candidates were then selected

and further narrowed in initial testing.

Model Evaluation and Final Selection

The initial experimentation phase evaluated model performance based on its ability to

model annual MMBTU energy consumption. Each candidate was evaluated on their

base model, then their model after hyperparameter tuning. The process is further

detailed below:

● Data Preparation:
○ Test on a sample of 320 houses to effectively manage the dataset.

○ The process includes downloading all related information for these houses

and loading it into a local database for HPXML conversion.

○ The datasets encompass various metrics, such as electricity and natural

gas totals, and environmental conditions within and around the house.

○ HPXML documents undergo parsing and conversion.

● Model experimentation and evaluation:
○ Model is trained on this dataframe at an 80:20 split and evaluated on:

■ Performance: Mean Squared Error (“MSE”2) for MMBTU
■ Speed: Inference time for 1,000,000 houses sampled from 20,000

houses from the test data set with replacement.

2 An evaluation metric to measure the distance between two sets of scalar values. It is defined as MSE =
(sum(x1 - x2))2/n.

13

○ Model then undergoes hyperparameter tuning and reevaluation under the

same metrics

It must be noted that despite having the option to train models tailored for all target

variables such as total electricity consumption or fuel oil consumption, MMBTU was

selected as the target variable across all experiments due to its ability to measure total

consumption of all fuel types in a standardized unit. The equation used to calculate the

MMBTU target column is as follows:

Figure 2: MMBTU equation used to calculate MMBTU target columns

By standardizing the total consumption to MMBTUs, this approach provides a robust

and efficient way to evaluate overall accuracy and speed, especially when training on

large datasets across several models.

We compared the model’s accuracy and computation time across 5 common machine

learning algorithms: 1) linear regression (baseline), 2) decision tree, 3) random forest, 4)

XGBoost, and 5) MultiLayer Perceptron (“MLP”). The computation time estimation was
done in a single machine to keep the estimates comparable.

For MLP, an “elimination” style hyperparameter tuning approach was taken with the Ray

Tune Library (Ray Tune)4,5. Using Ray Tune, a three step tuning method was

implemented.

The first step of elimination involved concurrently running 500 different parameter

configurations of MLP with early stopping. By using early stopping, all parameter

configurations without significant improvement in accuracy are dropped every 20

training rounds, leaving behind only the models showing substantial improvement

across the training process, seen below. The early-dropping process was conducted

https://paperpile.com/c/Vfx5a3/RtqN+TL6c

14

across the training epochs. For each series of training, the best model up to that point

was saved, for the later comparison.

The second step was sampling. The Ray Tune library initially performs training and

evaluation by sampling random data points in the hyperparameter search space. Then,

based on the evaluation results of these models, a Bayesian Search 6 is performed to

select better hyperparameters. For this process, we used an implementation called

AsyncHyperBandScheduler 7, which is included in the Ray Tune package.

The third step took the top 10 configurations and mapped out their mean absolute error3

(“MAE”) and MSE. In this phase, the focus was placed on the range of MSE values per

model rather than MAE; as by doing so, the overall accuracy and resilience of the model

is prioritized, emphasizing its ability to predict with consistency rather than just

closeness to the actual values.

In comparing the model with the overall range of MSE values, the final model with

minimum MSE values for the validation set (i.e., random 10% samples of training

dataset which is not utilized for the training) was selected and reevaluated similarly to

the other models.

3 Another metric to measure the distance between two sets of scalars. MAE = (abs(x1-x2))/n

https://paperpile.com/c/Vfx5a3/VbxY
https://paperpile.com/c/Vfx5a3/17bN

15

Results

By using this method for initial experimentation, a total of 5 model candidates were

evaluated in accuracy and speed. In both metrics, XGBoost showed the best

performance.

Model MMBTU MSE
Recall Time (s/1M random
inferences)

Linear Reg (Baseline) 1.79E+06 2.63

Decision Tree 4.36E+05 4.09

Random Forest 1.46E+05 4.41

XGBoost (XGB) 9.22E+04 4.48

Multi-Layer Perceptron

(MLP)

3.85E+05 7.01

Figure 3: Performance metrics across the 5 models tested, based on MMBTU

As seen above, overall, all advanced ML models such as XGB, MLP, and Random

Forest largely outperformed baseline models (i.e., linear regression). MLP showed

comparable results with XGB and Random Forest and it was observed during

experimentation that to handle the nonlinearity of the data, especially for black box

models, further calibration through hyperparameter tuning was an essential step when

modeling high dimensional, nonlinear data.

The figure below shows the experiments conducted during the hyperparameter tuning

process and the MSE accuracy at each of their experimental points (called epochs in

the ML field). You can see the early-stopping and continuous performance improvement

described above.

16

Figure 4: Hyperparameter tuning comparison of early-stopping across the configurations

in MLP

Among the models and hyperparameters evaluated, the best parameters for the MLP

model for annual MMBTU was chosen as below:

● Number of hidden layers: 4

● Number of neurons in each hidden layers: 86, 135, 11, 12

● Activation function: ReLU 8

● Dropout rate: 0.0101

● Optimizer Type: Adam

● Learning Rate: 0.02, 76.8% every 9 epochs

● Batch Size: 32

● Kernel Initializer: Glorot Uniform

● Batch Normalization: Applied

The comparison between the actual value of the dataset (i.e., RL’s OpenStudio) and

predicted value by MLP is also shown below. The dashed diagonal line is the x=y line,

signifying that the actual and the predicted are identical. Thus for interpretation, the

closer to the line, the more accurate the prediction is to the actual value.

https://paperpile.com/c/Vfx5a3/tVas

17

Figure 5: Comparison of predictions and actual values of MLP for MMBTU values

With a final MSE of 3.85E+05, the final model was able to make predictions for a million

inferences in 7.01 seconds. This speed is equivalent to roughly 507 million houses per

hour. In predicting MMBTU, the machine learning algorithms can finish the calculation

considerably faster than RMLE’s average calculation time (i.e., less than 1,000 houses

per hour).

18

In conclusion, these findings highlight the effectiveness of using machine learning for

energy estimation tasks. An example MLP model was produced with highest accuracy

among model candidates, to be published in the public repository4 along with the

inference code.

In addition, the three-step hyperparameter tuning process has demonstrated the

comparative advantages of machine learning models, particularly black box models like

the MLP, in processing complex, high-dimensional, and nonlinear data sets. This
approach, characterized by an initial "elimination" phase followed by a detailed analysis

based on MSE values, was able to identify and refine the most efficient MLP model

configuration. This process is also published in the open source project github

repository for reference.

 Overall, these outcomes highlight the potential of machine learning methodologies in
enhancing energy estimation processes and suggest that such techniques can

contribute significantly to advancements in energy analysis and sustainability efforts;

And with further model experimentation and calibration, future iterations under this

method show promise in increasing the overall efficiency and effectiveness of models

for both energy estimation and use case scenarios.

4 https://github.com/AgileElectrification/bill-calibration-public

https://github.com/AgileElectrification/bill-calibration-public

19

Use Case 1 – Single Home Predictions

When increasing computational speed through a lighter weight, machine learning based

approach, there are several use case scenarios that arise.

In the first use case, the MLP model can be used to predict hourly energy consumption

of a single home, most closely resembling a potential application at the contractor and

consumer level. Displayed below as an illustrative example, given the same data as the

training set (weather, time, and building characteristics), the model was able to produce

predictions for a single house with a low error while maintaining high inference speed

compared to the PBE.

Figure 7: An illustrative figure for the predicted hourly electricity use of a single sample

house across 100 hours

20

It is worth noting that the largest fluctuations in accuracy are present in extrema during

or prior to larger local minimas in energy consumption. Currently, this is hypothesized to

be largely related to occupancy schedule throughout the day such as peak usage times

in the morning and evening, introducing complexities that may not be fully captured by

the predictive models. Moreover, deep learning models, while adept at detecting

patterns, may not fully account for the stochastic nature of human presence or absence,

leading to discrepancies when compared to the PBE which may follow more

deterministic rules set by an algorithm or the user.

Additionally, another limitation arises from the data itself. While data is imperative for

training, after deployment, it is unlikely for users, especially at the individual level, to

know the full extent of data to achieve the level of accuracy seen above. This can be

mitigated by performing a sensitivity analysis which can reveal the most salient features

the model uses when making a prediction and help guide users to prioritize collecting

data on the features that significantly impact model performance. Moreover, improving

data preprocessing methods, such as outlier detection and feature engineering can help

in fine-tuning predictions. For future iterations, these insights can guide model

refinements, ensuring that subsequent versions are more robust against the variabilities

intrinsic to individual household electricity usage patterns.

21

Use Case 2 – Web Based Sensitivity Analysis

The second use case showcases an interactive, web based sensitivity analysis page5

which highlights feature importances established by the model when predicting energy

consumption. Aiming to demystify building energy usage, the page is broken into four

main sections: the quantity of data necessary for accurate calibration, features by order

of importance, feature interaction (sensitivity analysis), and an overall calibrated vs

uncalibrated accuracy comparison.

Figure 8: Screenshot of the current web based sensitivity analysis website showcasing

interactive updates to feature bars respective to their contribution to building energy

consumption

5 https://agileelectrification.org/playbook/blogs/demo-bill

https://agileelectrification.org/playbook/blogs/demo-bill

22

By using a machine learning model, developers can extract feature importance from the

MLP model through sensitivity analysis. However, it is well known that sensitivity

analysis is difficult to interpret, particularly in the case of multidimensional input data.

Based on the improved speed of our model, sensitivity analysis can be performed in

real time on the website. This specific use case utilizes the tensorflow.js library to make

real time inference calculations of feature interactions and estimated energy

consumption when the user adjusts a feature value. As the user moves the slider, all

bars, with interactive heights representing an output from the model for the respective

building characteristic, update with the user's slider movement showing the impact of a

feature on the overall building’s energy consumption.

Through interactive visualizations, this web integration use case can empower users to

pinpoint cost-effective energy upgrades and understand the interactions between

building characteristics and energy usage, demonstrating the merits of utilizing a

computationally lighter, machine learning based method. Additionally, through the MLP

models compatibility with Tensorflow.js , potential future implementations may include

direct single house prediction through a similar web based application, further

demonstrating its potential accessibility to a wider audience.

23

Conclusion

In an effort to increase computational speed from that of physics based models, the AE

project has developed an alternative, machine learning based methodology to predict

household energy consumption through emulation. By emulating PBE, this method

provides a robust guideline for model experimentation and implementation across

several use cases , ultimately, showcasing the potential of machine learning emulation

for energy consumption estimation.

By using the methods outlined in this paper, from file conversion to final model

implementation, the MLP model trained on building characteristics, weather, and time

data was able to predict energy consumption for houses with significantly higher speed

while maintaining accuracy compared to the PBE. These results ultimately demonstrate

the potential and merits of this machine learning based method and shed an optimistic

light towards investigating increasingly accurate models under this method.

Additionally, by utilizing machine learning to generate these predictions, several use

case scenarios are now possible. From quick single house estimates, to interactive web

deployment showcasing sensitivity analysis and feature interaction, machine learning

based emulators are able to tackle the pain point of accessibility and scalability by

performing these computations quickly and cost effectively across several platforms.

While there exists potential limitations regarding the specificity of regional data inputs,

availability of data, as well as occupancy schedule affecting the training and application

of such models, we are optimistic that with further training, feature engineering, or even

custom regularization algorithms these concerns can be further mitigated to produce a

more robust model increasingly more capable of modeling these behaviors and

24

regionalities. At large, the groundwork laid by the AE project paves the way for further

refinement of training protocols, data processing techniques, and model adaptability.

 Ongoing research will further extend these methodologies to a more diverse array of
environments, augmenting the robustness and versatility of energy modeling tools.

Model and Code Availability
The final models and relevant example source code are available in:

https://github.com/AgileElectrification/bill-calibration-public.

Acknowledgements
Made possible through the generous gifts directed to the Agile Electrification (“AE”)
project within the Design Lab, this work involved contributions from student researchers,

including Junghwan Park and Emi A. Lee. This project is part of broader efforts

conducted under the umbrella of the AE project led by Andrew Krause (“NPPS”). The
UCSD Design Lab has been the foundation of this research, and this effort was

designed and led by UCSD faculty member Eric Hekler. Employees of Radiant Labs,

including Adam Stenftenagel, Kelly O'Connell, Jill Pinsky and Joshua Mendoza, shared

invaluable insights and domain knowledge at every step of the project. Mark Hansen

(NPPS) and Chantelle Domingue (NPPS) have been exceptionally helpful in managing

this project. Junghwan Park is an employee of the Ministry of Health and Welfare,

Republic of Korea.

https://github.com/AgileElectrification/bill-calibration-public

25

References

1. Building Energy Modeling. Accessed March 30, 2024.
https://www.nrel.gov/buildings/building-energy-modeling.html

2. HPXML Specifications. Accessed March 30, 2024.
https://www.hpxmlonline.com/specifications/

3. HPXML - HPXML Data Dictionary v3.1.0. Accessed March 30, 2024.
https://hpxml.nrel.gov/datadictionary/3.1.0/

4. Liaw R, Liang E, Nishihara R, Moritz P, Gonzalez JE, Stoica I. Tune: A Research
Platform for Distributed Model Selection and Training. arXiv [csLG]. Published
online July 13, 2018. http://arxiv.org/abs/1807.05118

5. Ray Tune: Hyperparameter Tuning — Ray 2.10.0. Accessed April 1, 2024.
https://docs.ray.io/en/latest/tune/index.html

6. Wu J, Chen XY, Zhang H, Xiong LD, Lei H, Deng SH. Hyperparameter Optimization
for Machine Learning Models Based on Bayesian Optimizationb. Dianzi Keji Daxue
Xuebao. 2019;17(1):26-40. doi:10.11989/JEST.1674-862X.80904120

7. Li L, Jamieson K, Rostamizadeh A, et al. A System for Massively Parallel
Hyperparameter Tuning. arXiv [csLG]. Published online October 13, 2018.
http://arxiv.org/abs/1810.05934

8. Maas, Andrew L Hannun, Awni Y Ng, Andrew Y. Rectifier nonlinearities improve
neural network acoustic models. Proceedings of the 30th International Conference
on Machine Learning. 2013;28(JMLR: W&CP).
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf

http://paperpile.com/b/Vfx5a3/CdUo
https://www.nrel.gov/buildings/building-energy-modeling.html
http://paperpile.com/b/Vfx5a3/fDV1
https://www.hpxmlonline.com/specifications/
http://paperpile.com/b/Vfx5a3/uOYG
https://hpxml.nrel.gov/datadictionary/3.1.0/
http://paperpile.com/b/Vfx5a3/RtqN
http://paperpile.com/b/Vfx5a3/RtqN
http://paperpile.com/b/Vfx5a3/RtqN
http://arxiv.org/abs/1807.05118
http://paperpile.com/b/Vfx5a3/TL6c
https://docs.ray.io/en/latest/tune/index.html
http://paperpile.com/b/Vfx5a3/VbxY
http://paperpile.com/b/Vfx5a3/VbxY
http://paperpile.com/b/Vfx5a3/VbxY
http://dx.doi.org/10.11989/JEST.1674-862X.80904120
http://paperpile.com/b/Vfx5a3/17bN
http://paperpile.com/b/Vfx5a3/17bN
http://arxiv.org/abs/1810.05934
http://paperpile.com/b/Vfx5a3/tVas
http://paperpile.com/b/Vfx5a3/tVas
http://paperpile.com/b/Vfx5a3/tVas
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf

26

Appendix

Appendix 1. A Conversion Scheme from HPXML JSON to

Numeric Vectors

https://github.com/AgileElectrification/bill-calibration-public/blob/main/r1/data/design.jso

n

Appendix 2. The Final Input Feature List

https://github.com/AgileElectrification/bill-calibration-public/blob/main/r1/data/non_zerost

d_column_list.json

https://github.com/AgileElectrification/bill-calibration-public/blob/main/r1/data/design.json
https://github.com/AgileElectrification/bill-calibration-public/blob/main/r1/data/design.json
https://github.com/AgileElectrification/bill-calibration-public/blob/main/r1/data/non_zero_std_column_list.json
https://github.com/AgileElectrification/bill-calibration-public/blob/main/r1/data/non_zero_std_column_list.json

